Isotropic Quadratic Form

From Encyclopediaofmath

2020 Mathematics Subject Classification: Primary: 15A63 [MSN][ZBL]

A quadratic form $q$ on a vector space over a field $F$ which is non-degenerate (the associated bilinear form is non-singular) but which represents zero non-trivially: there is a non-zero vector $v$ such that $q(v) = 0$.

An anisotropic quadratic form $q$ is one for which $q(v) = 0 \Rightarrow v=0$.

References[edit]

  • Tsit Yuen Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society (2005) ISBN 0-8218-1095-2 Zbl 1068.11023 MR2104929
  • J.W. Milnor, D. Husemöller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete 73, Springer-Verlag (1973) ISBN 0-387-06009-X Zbl 0292.10016


Download as ZWI file | Last modified: 11/05/2025 03:22:32 | 6 views
☰ Source: https://encyclopediaofmath.org/wiki/Isotropic_quadratic_form | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]