Short description: Largest objects of the Solar System
Solar System
Objects
by orbit
by size
by discovery date
models
Lists
Gravitationally-rounded (equilibrium) objects
Possible dwarf planets
Moons (natural satellites)
Planetary-mass moons
Minor planets
Comets
Asteroids
Planets
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
v
t
e
Parts-per-million chart of the relative mass distribution of the Solar System, each cubelet denoting 2×1024 kg
This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius. These lists can be sorted according to an object's radius and mass and, for the most massive objects, volume, density, and surface gravity, if these values are available.
These lists contain the Sun, the planets, dwarf planets, many of the larger small Solar System bodies (which includes the asteroids), all named natural satellites, and a number of smaller objects of historical or scientific interest, such as comets and near-Earth objects.
Many trans-Neptunian objects (TNOs) have been discovered; in many cases their positions in this list are approximate, as there is frequently a large uncertainty in their estimated diameters due to their distance from Earth.
Solar System objects more massive than 1021 kilograms are known or expected to be approximately spherical. Astronomical bodies relax into rounded shapes (spheroids), achieving hydrostatic equilibrium, when their own gravity is sufficient to overcome the structural strength of their material. It was believed that the cutoff for round objects is somewhere between 100 km and 200 km in radius if they have a large amount of ice in their makeup;[1] however, later studies revealed that icy satellites as large as Iapetus (1,470 kilometers in diameter) are not in hydrostatic equilibrium at this time,[2] and a 2019 assessment suggests that many TNOs in the size range of 400–1,000 kilometers may not even be fully solid bodies, much less gravitationally rounded.[3] Objects that are ellipsoids due to their own gravity are here generally referred to as being "round", whether or not they are actually in equilibrium today, while objects that are clearly not ellipsoidal are referred to as being "irregular."
Spheroidal bodies typically have some polar flattening due to the centrifugal force from their rotation, and can sometimes even have quite different equatorial diameters (scalene ellipsoids such as Haumea). Unlike bodies such as Haumea, the irregular bodies have a significantly non-ellipsoidal profile, often with sharp edges.
There can be difficulty in determining the diameter (within a factor of about 2) for typical objects beyond Saturn. (See 2060 Chiron as an example) For TNOs there is some confidence in the diameters, but for non-binary TNOs there is no real confidence in the masses/densities. Many TNOs are often just assumed to have Pluto's density of 2.0 g/cm3, but it is just as likely that they have a comet-like density of only 0.5 g/cm3.[4]
For example, if a TNO is incorrectly assumed to have a mass of 3.59×1020 kg based on a radius of 350 km with a density of 2 g/cm3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm3, its true mass would be only 1.12×1019 kg.
The sizes and masses of many of the moons of Jupiter and Saturn are fairly well known due to numerous observations and interactions of the Galileo and Cassini orbiters; however, many of the moons with a radius less than ~100 km, such as Jupiter's Himalia, have far less certain masses.[5] Further out from Saturn, the sizes and masses of objects are less clear. There has not yet been an orbiter around Uranus or Neptune for long-term study of their moons. For the small outer irregular moons of Uranus, such as Sycorax, which were not discovered by the Voyager 2 flyby, even different NASA web pages, such as the National Space Science Data Center[6] and JPL Solar System Dynamics,[5] give somewhat contradictory size and albedo estimates depending on which research paper is being cited.
There are uncertainties in the figures for mass and radius, and irregularities in the shape and density, with accuracy often depending on how close the object is to Earth or whether it has been visited by a probe.
Contents
1Graphical overview
2Objects with radius over 400 km
3Smaller objects by mean radius
3.1From 200 to 399 km
3.2From 100 to 199 km
3.3From 50 to 99 km
3.4From 20 to 49 km
3.5From 1 to 19 km
3.6Below 1 km
4Gallery
5See also
6Notes
7References
8Further reading
9External links
Graphical overview
Relative diameters of the fifty largest bodies in the Solar System, colored by orbital region. Values are diameters in kilometers. Scale is linear.
Relative masses of the bodies of the Solar System. Objects smaller than Saturn are not visible at this scale.
Relative masses of the Solar planets. Jupiter at 71% of the total and Saturn at 21% dominate the system.
Relative masses of the solid bodies of the Solar System. Earth at 48% and Venus at 39% dominate. Bodies less massive than Pluto are not visible at this scale.
Relative masses of the rounded moons of the Solar System. Mimas, Enceladus, and Miranda are too small to be visible at this scale.
Objects with radius over 400 km
The following objects have a mean radius of at least 400 km. It was once expected that any icy body larger than approximately 200 km in radius was likely to be in hydrostatic equilibrium (HE).[7] However, Ceres (r = 470 km) is the smallest body for which detailed measurements are consistent with hydrostatic equilibrium,[8] whereas Iapetus (r = 735 km) is the largest icy body that has been found to not be in hydrostatic equilibrium.[9] The known icy moons in this range are all ellipsoidal (except Proteus), but trans-Neptunian objects up to 450–500 km radius may be quite porous.[10]
For simplicity and comparative purposes, the values are manually calculated assuming that the bodies are all spheres. The size of solid bodies does not include an object's atmosphere. For example, Titan looks bigger than Ganymede, but its solid body is smaller. For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure.[11]
Because Sedna and 2002 MS4 have no known moons, directly determining their mass is impossible without sending a probe (estimated to be from 1.7x1021 to 6.1×1021 kg for Sedna[12]).
Body[note 1]
Image
Radius[note 2]
Volume
Mass
Surface area
Density
Gravity[note 3]
Type
Discovery
(km)
(R🜨)
(109 km3)
(V🜨)
(1021 kg)
(M🜨)
(106 km2)
🜨
(g/cm3)
(m/s2)
(🜨)
Sun
695508 ± ?[13]
109.2[13]
1,409,300,000[13]
1,301,000[13]
1989100000[13]
333,000[13]
6,078,700[13]
11,918[13]
1.409[13]
274.0[13]
27.94[13]
G2V-class star
2 prehistoric
Jupiter
69911±6[14]
10.97
1,431,280
1,321
1898187±88[14]
317.83
61,419[15]
120.41
1.3262±0.0003[14]
24.79[14]
2.528
gas giant planet; has rings
5 prehistoric
Saturn
58232±6[14] (136775 for A Ring)
9.140
827,130
764
568317±13[14]
95.162
42,612[16]
83.54
0.6871±0.0002[14]
10.44[14]
1.065
gas giant planet; has rings
8 prehistoric
Uranus
25362±7[14]
3.981
68,340
63.1
86813±4[14]
14.536
8083.1[17]
15.85
1.270±0.001[14]
8.87[14]
0.886
ice giant planet; has rings
1781
Neptune
24622±19[14]
3.865
62,540
57.7
102413±5[14]
17.147
7618.3[18]
14.94
1.638±0.004[14]
11.15[14]
1.137
ice giant planet; has rings
1846
Earth
6371.0±0.0001[14]
1
1,083.21
1
5972.4±0.3[14]
1
510.06447[19]
1
5.5136±0.0003[14]
9.81[14]
1
terrestrial planet
1 prehistoric
Venus
6052±1[14]
0.9499
928.43
0.857
4867.5±0.2[14]
0.815
460.2[20]
0.903
5.243±0.003[14]
8.87[14]
0.905
terrestrial planet
4 prehistoric
Mars
3389.5±0.2[14]
0.5320
163.18
0.151
641.71±0.03[14]
0.107
144.37[21]
0.283
3.9341±0.0007[14]
3.71[14]
0.379
terrestrial planet
6 prehistoric
Ganymede Jupiter III
2634.1±0.3
0.4135
76.30
0.0704
148.2
0.0248
86.999[22]
0.171
1.936
1.428
0.146
moon of Jupiter (icy)
1610
Titan Saturn VI
2574.73±0.09[23]
0.4037[lower-alpha 1]
71.50
0.0658
134.5
0.0225
83.3054[24]
0.163
1.880±0.004
1.354
0.138
moon of Saturn (icy)
1655
Mercury
2439.4±0.1[14]
0.3829
60.83
0.0562
330.11±0.02[14]
0.0553
74.797[25]
0.147
5.4291±0.007[14]
3.70[14]
0.377
terrestrial planet
7 prehistoric
Callisto Jupiter IV
2410.3±1.5[23]
0.3783
58.65
0.0541
107.6
0.018
73.005[26]
0.143
1.834±0.003
1.23603
0.126
moon of Jupiter (icy)
1610
Io Jupiter I
1821.6±0.5[5]
0.2859
25.32
0.0234
89.32
0.015
41.698[27]
0.082
3.528±0.006
1.797
0.183
moon of Jupiter (terrestrial)
1610
Moon Earth I
1737.5±0.1[28]
0.2727
21.958
0.0203
73.46[29]
0.0123
37.937[30]
0.074
3.344±0.005[28]
1.625
0.166
moon of Earth (terrestrial)
3 prehistoric
Europa Jupiter II
1560.8±0.5[5]
0.2450
15.93
0.0147
48.00
0.008035
30.613[31]
0.06
3.013±0.005
1.316
0.134
moon of Jupiter (terrestrial)
1610
Triton Neptune I
1353.4±0.9[lower-alpha 1][23]
0.2124[lower-alpha 1]
10.38
0.0096
21.39±0.03
0.003599
23.018[32]
0.045
2.061
0.782
0.0797
moon of Neptune (icy)
1846
Pluto 134340
1188.3±0.8
0.187
7.057
0.00651
13.03±0.03
0.0022
17.79
0.034
1.854±0.006
0.620
0.063
dwarf planet; plutino; multiple
1930
Eris 136199
1163±6[lower-alpha 2][33]
0.1825[lower-alpha 2]
6.59
0.0061
16.6±0.2[34]
0.0028
17
0.033
2.52±0.07
0.824
0.083
dwarf planet; SDO; binary
2003
Haumea 136108
798±6 to 816[35]
0.12
1.98[lower-alpha 3]
0.0018
4.01±0.04[36]
0.00066
8.14
0.016
2.018[37][lower-alpha 4]
0.401
0.0409
dwarf planet; resonant KBO (7:12); trinary; has rings
2004
Titania Uranus III
788.9±1.8[23]
0.1237[lower-alpha 5]
2.06
0.0019
3.40±0.06
0.00059
7.82[38]
0.015
1.711±0.005
0.378
0.0385
moon of Uranus
1787
Rhea Saturn V
763.8±1.0[lower-alpha 5]
0.1199[lower-alpha 5]
1.87
0.0017
2.307
0.00039
7.34[39]
0.014
1.236±0.005
0.26
0.027
moon of Saturn
1672
Oberon Uranus IV
761.4±2.6[lower-alpha 1][23]
0.1195[lower-alpha 1]
1.85
0.0017
3.08±0.09
0.0005
7.285[40]
0.014
1.63±0.05
0.347
0.035
moon of Uranus
1787
Iapetus Saturn VIII
735.6±1.5[5]
0.1153
1.66
0.0015
1.806
0.00033
6.8
0.013
1.088±0.013
0.223
0.0227
moon of Saturn
1671
Makemake 136472
715+19 −11[41]
0.112
1.53
0.0014
≈ 3.1
0.00053
6.4
0.013
≈ 2.1
0.57
0.0581
dwarf planet; cubewano
2005
Gonggong 225088
615±25[42]
0.0983
1.03
0.0009
1.75±0.07
0.00029
4.753
0.009
1.72±0.16
0.3
0.0306
dwarf planet?; resonant SDO (3:10)
2007
Charon Pluto I
606.0±0.5
0.0951
0.932
0.0009
1.586±0.015
0.00025
4.578[43]
0.009
1.70±0.02
0.288
0.0294
moon of Pluto
1978
Umbriel Uranus II
584.7±2.8[23]
0.0918
0.837
0.0008
1.28±0.03
0.00020
4.3[44]
0.008
1.39±0.16
0.234
0.024
moon of Uranus
1851
Ariel Uranus I
578.9±0.6[23]
0.0909
0.813
0.0007
1.25±0.02
0.000226
4.211[45]
0.008
1.66±0.15
0.269
0.027
moon of Uranus
1851
Dione Saturn IV
561.7±0.45[23]
0.0881
0.741
0.0007
1.095
0.000183
3.965[46]
0.008
1.478±0.003
0.232
0.0237
moon of Saturn
1684
Quaoar 50000
543±2
0.0879
0.737
0.0007
1.20±0.05[47]
0.0002
3.83
0.008
2.0±0.5[48]
0.3
0.0306
cubewano; binary
2002
Tethys Saturn III
533.0±0.7[23]
0.0834
0.624
0.0006
0.617
0.000103
3.57[49]
0.007
0.984±0.003[50]
0.145
0.015
moon of Saturn
1684
Sedna 90377
498±40
0.0785
0.516
0.0005
sednoid; detached object
2003
Ceres 1
469.7±0.1[51]
0.0742
0.433
0.0004
0.938[52]
0.000157
2.85[53]
0.006[53]
2.17
0.28
0.029
dwarf planet; belt asteroid
1801
Orcus 90482
455+25 −20
0.0719
0.404
0.0004
0.548±0.010[54]
0.000092
1.4±0.2[54]
0.2
0.0204
plutino; binary
2004
Salacia 120347
423±11
0.0664
0.3729
0.0003
0.492±0.007[55]
0.000082
1.5±0.1[55]
0.165
0.0168
cubewano; binary
2004
2002 MS4 307261
400±12[56]
0.0628
0.2681
0.0002
cubewano
2002
Smaller objects by mean radius
From 200 to 399 km
All imaged icy moons with radii greater than 200 km except Proteus are clearly round, although those under 400 km that have had their shapes carefully measured are not in hydrostatic equilibrium.[57] The known densities of TNOs in this size range are remarkably low (1–1.2 g/cm3), implying that the objects retain significant internal porosity from their formation and were never gravitationally compressed into fully solid bodies.[10]
Body[note 1]
Image
Radius[note 2] (km)
Mass (1018 kg)
Density (g/cm3)
Type[note 4]
Refs[note 5] r · M
2002 AW197 55565
384±19
–
–
cubewano
[59]
Varda 174567
373±8
245±6
1.23±0.04
cubewano; binary
[60]·[60]
2013 FY27 532037
370±40
–
–
SDO; binary
[61]
2003 AZ84 208996
362 ~ 386±6 (assuming HE)
150 ~ 210 (assuming HE)
0.76 ~ 0.87 (assuming HE)
plutino; binary
[58][62]
Ixion 28978
354.8±0.1
–
–
plutino
[63]
2004 GV9 90568
340±17
–
–
cubewano
[64]
2005 RN43 145452
340+28 −37
–
–
cubewano
[64]
Varuna 20000
334+77 −43
≈ 160
0.99+0.09 −0.02
cubewano
[65]·[66]
2002 UX25 55637
332±15
125±3
0.82±0.11
cubewano; binary
[67]·[68]
2005 RM43 145451
322
–
–
SDO
[69][70]
Gǃkúnǁʼhòmdímà 229762
321±14
136.1±3.3
1.02±0.17
SDO; binary
[71]·[72]
2014 UZ224
317.5+28.5 −30.5
–
–
SDO
[73]
2008 OG19 470599
309.5+28 −56.5
–
0.609±0.004
SDO
[74]·[74]
2007 JJ43 278361
305+85 −70
–
–
cubewano
[75]
Chaos 19521
300+70 −65
–
–
cubewano
[64]
Dysnomia Eris I
≈ 300; ≤ 370
300–500 < 140
1.8–2.4 < 1.2
moon of Eris
[76][54]
2014 EZ51 523692
> 288
–
–
SDO
[77]
2012 VP113
≈ 287
–
–
sednoid
[78]
2002 XW93 78799
283+36 −37
–
–
other TNO
[79]
2004 XR190 612911
≈ 278
–
–
SDO
[7]
2002 XV93 612533
275+11 −12
–
–
plutino
[80]
2015 RR245 523794
≈ 270
–
–
resonant KBO (2:9); binary
[78]
2003 UZ413 455502
≈ 268
–
–
plutino
[7]
Vesta 4
262.7±0.1
259
3.46
belt asteroid type V
[81]·[81]
2003 VS2 84922
262±4
–
–
plutino
[82]
Pallas 2
256±2
204±3
2.92±0.08
belt asteroid type B
[83][84]
2004 TY364 120348
256+19 −20
–
–
cubewano
[85]
Enceladus Saturn II
252.1±0.2
108.0±0.1
1.609±0.005
moon of Saturn
[86]·[87]
2002 TC302 84522
250±7
–
–
resonant SDO (2:5)
[88]
2005 UQ513 202421
249+32 −38
–
–
cubewano
[59]
Miranda Uranus V
235.8±0.7
65.9±7.5
1.2±0.15
moon of Uranus
[89]·[90]
Dziewanna 471143
235+18 −5
–
–
SDO
[91]
2005 TB190 145480
232±31
–
–
detached object
[92]
1999 DE9 26375
231±23
–
–
resonant SDO (2:5)
[93]
2003 FY128 120132
230±11
–
–
SDO
[92]
2002 VR128 84719
224+24 −22
–
–
plutino
[80]
Vanth Orcus I
221±5
87±8
1.5+1.0 −0.5
moon of 90482 Orcus
[94]·[54]
Hygiea 10
216±4
87.4±6.9
2.06±0.20
belt asteroid type C
[95]·[84]
2004 NT33 444030
212+44 −40
–
–
cubewano
[59]
Proteus Neptune VIII
210±7
44
≈ 1.3
moon of Neptune
[5]·[5]
2005 QU182 303775
208±37
–
–
SDO
[92]
2002 KX14 119951
207.5±0.5
–
–
cubewano
[96]
2001 QF298 469372
204+20 −22
–
–
plutino
[80]
Huya 38628
203±8
> 50
> 1.43
plutino; binary
[67]·[97]
2004 PF115 175113
203+49 −38
–
–
plutino
[80]
Legend:
SDO – scattered disc object
cubewano – classical Kuiper belt object
plutino – 2:3 orbital resonance with Neptune
From 100 to 199 km
This list contains a selection of objects estimated to be between 100 and 199 km in radius (200 and 399 km in diameter). The largest of these may have a hydrostatic-equilibrium shape, but most are irregular. Most of the trans-Neptunian objects (TNOs) listed with a radius smaller than 200 km have "assumed sizes based on a generic albedo of 0.09" since they are too far away to directly measure their sizes with existing instruments. Mass switches from 1021 kg to 1018 kg (Zg). Main-belt asteroids have orbital elements constrained by (2.0 AU < a < 3.2 AU; q > 1.666 AU) according to JPL Solar System Dynamics (JPLSSD).[98] Many TNOs are omitted from this list as their sizes are poorly known.[58]
Body[note 1]
Image
Radius[note 2] (km)
Mass (1018 kg)
Type
Refs[note 5] r·M
2004 UX10 144897
199±20
≈ 30
plutino
[80]·[99]
Mimas Saturn I
198.2±0.3
37.49±0.03
moon of Saturn
[86]·[87][23]
1998 SN165 35671
196±20
cubewano
[59]
2001 UR163 42301
≈ 176
resonant KBO (4:9)
[58]
Nereid Neptune II
170±25
moon of Neptune
[23]
1996 TL66 15874
170±10
SDO
[92]
2004 XA192 230965
170+60 −47.5
SDO
[80]
2002 WC19 119979
≈ 169
77±5
resonant KBO (1:2); binary
[100]·[100]
Interamnia 704
166±3
35.2±5.1
belt asteroid type F
[101]·[84]
Ilmarë Varda I
163±18
moon of 174567 Varda
[102]
Europa 52
160±2
23.9±3.8
belt asteroid type C
[84]
Hiʻiaka Haumea I
≈ 160
17.9±1.1
moon of Haumea
[36]·[36]
Davida 511
149±2
26.6±7.3
belt asteroid type C
[84]
2002 TX300 55636
143±5
cubewano
[103]
Actaea Salacia I
143±12
moon of 120347 Salacia
[104]
Sylvia 87
137±2
14.3±0.5
outer belt asteroid type X; trinary
[84]
Lempo 47171
136±9
plutino; trinary
[105]
Eunomia 15
135±2
30.5±1.9
belt asteroid type S
[84]
Hyperion Saturn VII
135±4
5.62±0.05
moon of Saturn
[57]·[57][23]
Euphrosyne 31
134±2
16.5±2.6
belt asteroid type C; binary
[84]
1998 SM165 26308
134±14
6.87±1.8
resonant KBO (1:2)
[106]·[106]
Cybele 65
131.5±1.5
14.8±1.8
outer belt asteroid type C
[107]
Chariklo 10199
≈ 130
centaur; has rings
[108]
Juno 3
127±1
27.0±2.4
belt asteroid type S
[84]
Hiisi Lempo II
126±8
secondary of 47171 Lempo
[105]
Hektor 624
125±13
7.9±1.4
Jupiter trojan (L4) type D; binary
[109]·[109]
Sila 79360
124±15
10.8±0.22
cubewano; binary
[110]
2007 RW10 309239
124±15
quasi-satellite of Neptune
[92]
Altjira 148780
123+19 −70
cubewano; binary
[59]
Nunam 79360
118±15
secondary of 79360 Sila
[110]
Bamberga 324
114±2
10.2±0.9
belt asteroid type C
[84]
Patientia 451
112.9±2.3
10.9±5.3
belt asteroid type C
[111]·[112]
Psyche 16
112±2
26.2±2.9
belt asteroid type M
[84]
Ceto 65489
112±5
5.4±0.4
extended centaur; binary
[92]·[113]
Herculina 532
111.2±2.4
belt asteroid type S
[114]
S/2007 (148780) 1 Altjira I
110+17 −62
secondary of 148780 Altjira
[59]
Hesperia 69
110±15
5.86±1.18
belt asteroid type M
Thisbe 88
109±2
11.6±2.2
belt asteroid type B
[84]
Doris 48
108±2
6.9±2.9
belt asteroid type C
[84]
Chiron 2060 or 95P
108±5
centaur; has rings
[67]
Phoebe Saturn IX
106.5±0.7
8.29±0.01
moon of Saturn
[57]·[57][23]
S/2012 (38628) 1 Huya I
106±15
moon of 38628 Huya
[67]
Fortuna 19
File:19 Fortuna VLT (2021), deconvolved.pdf
105.5±1.0
8.8±1.4
belt asteroid type G
[84]
Camilla 107
105±4
11.2±0.3
outer belt asteroid type C; trinary
[111]·[112]
Themis 24
104±2
6.2±2.9
belt asteroid type C
[84]
Amphitrite 29
102±1
12.7±2.0
belt asteroid type S
[84]
Egeria 13
101±2
9.2±2.1
belt asteroid type G
[84]
Iris 7
100±5
13.5±2.3
belt asteroid type S
[84]
Legend:
centaur – asteroids orbiting between the outer planets
Jupiter trojan – asteroids located in Jupiter's L4 and L5 Lagrange points
From 50 to 99 km
This list contains a selection of objects 50 and 99 km in radius (100 km to 199 km in average diameter). The listed objects currently include most objects in the asteroid belt and moons of the giant planets in this size range, but many newly discovered objects in the outer Solar System are missing, such as those included in the following reference.[58] Asteroid spectral types are mostly Tholen, but some might be SMASS.
Body[note 1]
Image
Radius[note 2] (km)
Mass (1018 kg)
Type
Refs[note 5] r·M
Elektra 130
99.5±1
6.4±0.2
belt asteroid type G; multiple
[84]
Bienor 54598
99+3 −3.5
centaur
[115]
Hebe 6
97.5±1.5
12.4±2.4
belt asteroid type S
[84]
Larissa Neptune VII
97±3
≈ 4.2
moon of Neptune
[116]·[lower-alpha 6][23]
Ursula 375
96.8±1.3
8.4±5.3
belt asteroid type C
[118]·[112]
S/2018 (532037) 1
≈ 95
moon of 2013 FY27
[61]
Eugenia 45
50px|center
94±1
5.8±0.1
belt asteroid type F; trinary
[84]
Hermione 121
94±3
5.0±0.3
outer belt asteroid type C; binary
[119]·[112]
Daphne 41
50px|center
94±7
6.1±0.9
belt asteroid type C; binary
[84]
Aurora 94
6.2±3.6
belt asteroid type C
[120]·[112]
Bertha 154
50px|center
93.4±0.9
belt asteroid type C
[112]·[112]
Janus Saturn X
89.5±1.4
1.898±0.001
moon of Saturn
[57]·[57]
Teharonhiawako 88611
89+16 −18
cubewano; binary
[59]·[121]
Aegle 96
88.9±0.8
6.4±6.3
belt asteroid type T
[111]·[112]
Galatea Neptune VI
88±4
2.12±0.08
moon of Neptune
[116]·[122][23]
Phorcys Ceto I
87+8 −9
≈ 1.67
secondary of 65489 Ceto
[113]·[113]
Palma 372
5.2±0.6
belt asteroid type B
[123]·[112]
Metis 9
86.5±1
8.0±1.9
belt asteroid type S
[111]·[112]
Alauda 702
86±28
belt asteroid type C; binary
[123]·[124]
Hilda 153
85.3±1.6
outer belt asteroid; Hildas
[114]
Himalia Jupiter VI
85
4.2±0.6
moon of Jupiter
[5]·[125]
Namaka Haumea II
≈ 85
1.8±1.5
moon of Haumea
[36]·[36]
Weywot Quaoar I
≈ 85
< ≈ 5
moon of 50000 Quaoar
Freia 76
84.2±1.0
outer belt asteroid type P/type X
[118]·[112]
Amalthea Jupiter V
83.45±2.4
2.08±0.15
moon of Jupiter
[126]·[127][23]
Agamemnon 911
83.3±2.0
Jupiter trojan (L4) type D
[114]
Elpis 59
82.6±2.3
3±0.5
belt asteroid type CP/type B
[111]·[112]
Eleonora 354
50px|center
82.5±1.5
7.5±2.7
belt asteroid type A
[84]
Nemesis 128
50px|center
81.5±2.5
3.4±1.7
belt asteroid type C
[84]
Puck Uranus XV
81±2
moon of Uranus
S/2015 (136472) 1 Makemake I
≈ 80
moon of Makemake
[128]
Sycorax Uranus XVII
78.5+11.5 −7.5
moon of Uranus
[129]
Io 85
2.6±1.5
belt asteroid type FC/type B
[114]·[112]
Minerva 93
77.08±0.65
3.5±0.4
belt asteroid type C; trinary
[111]·[112]
Alexandra 54
77.07±0.32
belt asteroid type C
[111]·[112]
Laetitia 39
77±2
4.7±1.1
belt asteroid type S
[112]·[112]
Nemausa 51
75±1.5
3.9±1.6
belt asteroid type G
[84]
Kalliope 22
50px|center
75±2.5
7.7±0.4
belt asteroid type M; binary
[84]
Despina Neptune V
75±3
moon of Neptune
[23]
Manwë 385446
≈ 75
≈ 1.41
resonant KBO (4:7); binary
[130]·[130]
Pales 49
≈ 74.9
4.2±2.2
belt asteroid type C
[114]·[112]
Parthenope 11
50px|center
74.5±1
5.5±0.4
belt asteroid type S
[84]
Arethusa 95
74.0±2.4
belt asteroid type C
[120]
Pulcova 762
73.7±0.4
1.4±0.1
belt asteroid type F; binary
[111]·[131]
Flora 8
50px|center
73±1
4.0±1.6
belt asteroid type S
[84]
Ino 173
50px|center
72.5±1.5
2.2±1.3
belt asteroid type Xc
[84]
Adeona 145
50px|center
72±1.5
2.4±0.3
belt asteroid type Xc
[84]
Irene 14
72±1
2.9±1.9
belt asteroid type S
[118]·[112]
Melpomene 18
50px|center
70.5±1
4.5±0.9
belt asteroid type S
[84]
Lamberta 187
50px|center
70.5±1
1.9±0.3
belt asteroid type Ch
[84]
Aglaja 47
71±4
3.2±1.7
belt asteroid type C
[112]·[112]
Patroclus 617
70.2±0.4
1.36±0.11
Jupiter trojan (L5) type P; binary
[111]·[112]
Julia 89
70±1.4
4.3±3.2
belt asteroid type S
[84]
Typhon 42355
69±4.5
0.87±0.03
resonant SDO (7:10); binary
[115]·[132]
Massalia 20
67.8±1.8
5±1.04
belt asteroid type S
[123]·[112]
Portia Uranus XII
67.6±4
moon of Uranus
[5]
Emma 283
66.2±0.1
1.38±0.03
belt asteroid type X; binary
[111]·[112]
Paha Lempo I
66+4 −4.5
0.746±0.001
moon of 47171 Lempo
[105]·[133]
Lucina 146
65.9±?
belt asteroid type C
[134]
Sawiskera Teharonhiawako I
65.5+12 −13
secondary of 88611 Teharonhiawako
[59]
Achilles 588
65.0±0.3
Jupiter trojan (L4) type DU
[111]
Panopaea 70
64.0±0.4
4.33±1.09
belt asteroid type C
[111]·[112]
Thule 279
63.3±1.8
outer belt asteroid type D
[114]
Borasisi 66652
63+12.5 −25.5
3.433±0.027
cubewano; binary
[59]·[135]
Hestia 46
62.07±1.7
3.5
belt asteroid type P/type Xc
[114]·[136]
Leto 68
61.3±1.6
3.28±1.9
belt asteroid type S
[111]·[112]
Undina 92
60.46±0.85
4.43±0.25
belt asteroid type X
[118]·[112]
Bellona 28
60.45±1.90
2.62±0.15
belt asteroid type S
[137]·[112]
Diana 78
60.30±1.35
1.27±0.13
belt asteroid type C
[138]·[112]
Anchises 1173
60.2±1.5
Jupiter trojan (L5) type P
[118]
Bernardinelli-Bernstein C/2014 UN271
60±7
comet
[139]
Galatea 74
59.4±1.4
6.13±5.36
belt asteroid type C
[140]·[112]
Deiphobus 1867
59.1±0.8
Jupiter trojan (L5) type D
[141]
Äneas 1172
59.01±0.40
Jupiter trojan (L5) type D
[142]
Kleopatra 216
59±1
3.0±0.3
belt asteroid type M; trinary
[84]
Athamantis 230
59±1
2.3±1.1
belt asteroid type S
[84]
Diomedes 1437
58.89±0.59
Jupiter trojan (L4) type D
[143]
Terpsichore 81
58.9±0.4
6.19±5.31
belt asteroid type C
[144]·[112]
Epimetheus Saturn XI
58.1±1.8
0.5266±0.0006
moon of Saturn
[57]·[57]
Victoria 12
58±1
2.7±1.3
belt asteroid type S
[84]
Circe 34
57.7±1.0
≈ 3.66±0.03
belt asteroid type C
[111]·[112]
Leda 38
57.7±0.7
5.71±5.47
belt asteroid type C
[112]·[112]
Odysseus 1143
57.3±0.3
Jupiter trojan (L4) type D
[145]
Alcathous 2241
56.8±0.9
Jupiter trojan (L5) type D
[146]
Melete 56
56.62±0.85
4.61
belt asteroid type P
[114]·[112]
Mnemosyne 57
56.3±1.4
≈ 12.6±2.4
belt asteroid type S
[147]·[112]
Nestor 659
56.2±0.9
Jupiter trojan (L4) type XC
[148]
Harmonia 40
55.6±0.2
belt asteroid type S
[149]
Leleākūhonua 541132
55+7 −5
sednoid
[150]
Euterpe 27
54.9±0.8
1.67±1.01
belt asteroid type S
[118]·[112]
Antilochus 1583
54.4±0.3
Jupiter trojan (L4) type D
[111]
Thorondor Manwë I
54
0.5
secondary of 385446 Manwë
[130]·[130]
Thalia 23
53.8±1.1
1.96±0.09
belt asteroid type S
[151]·[112]
Erato 62
53.5±0.3
belt asteroid type BU/type Ch
[152]
Astraea 5
53.3±1.6
2.9
belt asteroid type S
[153]·[136]
Pabu Borasisi I
52.5+10 −21
secondary of 66652 Borasisi
[59]
Eos 221
51.76±2.8
≈ 5.87±0.34
belt asteroid type S/type K
[112]·[112]
Aegina 91
51.7±0.2
belt asteroid type C
[154]
Leukothea 35
51.5±0.6
belt asteroid type C
[155]
Menoetius Patroclus I
51.4±0.25
secondary of 617 Patroclus
[156]
Isis 42
51.4±1.4
1.58±0.52
belt asteroid type S
[112]·[112]
Klotho 97
50.4±0.3
1.33±0.13
belt asteroid type M
[111]·[112]
Troilus 1208
50.3±0.5
Jupiter trojan (L5) type FCU
[157]
From 20 to 49 km
This list includes few examples since there are about 589 asteroids in the asteroid belt with a measured radius between 20 and 49 km.[158] Many thousands of objects of this size range have yet to be discovered in the trans-Neptunian region. The number of digits is not an endorsement of significant figures. The table switches from ×1018 kg to ×1015 kg (Eg). Most mass values of asteroids are assumed.[112][159]
Body[note 1]
Image
Radius[note 2] (km)
Mass (1015 kg)
Type – notes
Refs[note 5] r·M
Asterope 233
49.8±0.6
belt asteroid type T/type K
[160]
Pholus 5145
49.5+7.5 −7
centaur
[115]
Thebe Jupiter XIV
49.3±2
moon of Jupiter
[126]
Lutetia 21
49±1
1700±20
belt asteroid type M
[84]
Kalypso 53
48.631±13.299
≈ 5630±5000
belt asteroid type XC
[161]·[112]
Notburga 626
48.42±2.335
belt asteroid type XC
[112]
Proserpina 26
47.4±0.85
748±895
belt asteroid type S
[162]·[112]
Juliet Uranus XI
46.8±4
moon of Uranus
[5]
Urania 30
44±1
1300±900
belt asteroid type S
[84]
Ausonia 63
46.5±1.5
1200±200
belt asteroid type S
[84]
Beatrix 83
44.819±1.326
belt asteroid type X
[111]
Concordia 58
44.806±0.419
belt asteroid type C
[111]
Echidna Typhon I
44.5±3
moon of 42355 Typhon
[132]
Automedon 2920
44.287±0.898
Jupiter trojan (L4) type D
[163]
Antiope 90
43.9±0.5
828±22
belt asteroid type C; binary
[164]·[164]
Prometheus Saturn XVI
43.1±2.7
159.5±1.5
moon of Saturn
[57]·[57]
Danaë 61
42.969±1.076
2890±2780
belt asteroid type S
[165]·[112]
Thetis 17
42.449±1.014
1200
belt asteroid type S
[166]·[159]
Pandora 55
42.397±1.251
belt asteroid type M
[167]
Huenna 379
42.394±0.779
383±19
belt asteroid type B/type C; binary
[168]·[169]
Virginia 50
42.037±0.121
2310±700
belt asteroid type X/type Ch
[170]·[112]
Feronia 72
41.975±2.01
≈ 3320±8490
belt asteroid type TDG
[112]·[112]
S/2000 (90) 1 Antiope I
41.9±0.5
secondary of 90 Antiope
[164]
Poulydamas 4348
41.016±0.313
Jupiter trojan (L5) type C
[171]
Logos 58534
41±9
458±6.9
cubewano; binary
[172]·[172]
Pandora Saturn XVII
40.7±1.5
137.1±1.9
moon of Saturn
[57]·[57]
Thalassa Neptune IV
40.7±2.8
moon of Neptune
[116]
Niobe 71
40.43±0.4
belt asteroid type S
[118]
Pomona 32
40.38±0.8
belt asteroid type S
[173]
Belinda Uranus XIV
40.3±8
moon of Uranus
[5]
Elara Jupiter VII
39.95±1.7
moon of Jupiter
[174]
Cressida Uranus IX
39.8±2
moon of Uranus
[5]
Amycus 55576
38.15±6.25
centaur
[93]
Hylonome 10370
37.545
centaur
[175]
Socus 3708
37.831±0.404
Jupiter trojan (L5) type C
[111]
Nysa 44
37.83±0.37
belt asteroid type E
[118]
Rosalind Uranus XIII
36±6
moon of Uranus
[5]
Maja 66
35.895±0.46
belt asteroid type C
[118]
Ariadne 43
35.67±0.627
≈ 1210±220
belt asteroid type S
[176]·[112]
Iphigenia 112
35.535±0.26
≈ 1970±6780
belt asteroid type C
[112]·[112]
Xiangliu Gonggong I
≈ 35±15
moon of (225088) Gonggong
Dike 99
33.677±0.208
belt asteroid type C
[177]
Echeclus 60558 or 174P
32.3±0.8
centaur
[115]
Desdemona Uranus X
32±4
moon of Uranus
[5]
Eurybates 3548
31.943±0.149
Jupiter trojan (L4) type CP
[111]
Eurynome 79
31.739±0.476
belt asteroid type S
[178]
Eurydike 75
31.189±0.802
belt asteroid type M
[179]
Halimede Neptune IX
≈ 31
moon of Neptune
[5]
Phocaea 25
30.527±1.232
599±60
belt asteroid type S
[111]·[112]
Naiad Neptune III
30.2±3.2
moon of Neptune
[116]
Schwassmann– Wachmann 1 29P
30.2±3.7
comet
[180]
Neso Neptune XIII
≈ 30
moon of Neptune
[5]
Angelina 64
29.146±0.541
belt asteroid type E
[181]
Pasiphae Jupiter VIII
28.9±0.4
moon of Jupiter
[174]
Alkmene 82
28.811±0.357
belt asteroid type S
[182]
Nessus 7066
28.5±8.5
centaur
[115]
Polana 142
27.406±0.139
belt asteroid type F
[183]
Bianca Uranus VIII
27±2
moon of Uranus
[5]
Mathilde 253
26.4
103.3±4.4
belt asteroid type C
[184]·[185]
Hidalgo 944
26.225±1.8
centaur
[118]
Orus 21900
25.405±0.405
Jupiter trojan (L4) type C/type D
[111]
Amalthea 113
25.069±0.633
belt asteroid type S; binary
[111]
Prospero Uranus XVIII
≈ 25
moon of Uranus
[5]
Setebos Uranus XIX
≈ 24
moon of Uranus
[5]
Carme Jupiter XI
23.35±0.45
moon of Jupiter
[174]
Klytia 73
22.295±0.471
belt asteroid type S
[186]
Sao Neptune XI
≈ 22
moon of Neptune
[5]
Echo 60
21.609±0.286
315±32
belt asteroid type S
[187]·[112]
Metis Jupiter XVI
21.5±2
≈ 119.893
moon of Jupiter
[126]·[188]
Ophelia Uranus VII
21.4±4
moon of Uranus
[5]
Lysithea Jupiter X
21.1±0.35
moon of Jupiter
[174]
Caliban Uranus XVI
21+10 −6
moon of Uranus
[129]
Laomedeia Neptune XII
≈ 21
moon of Neptune
[5]
Cordelia Uranus VI
20.1±3
moon of Uranus
[5]
Psamathe Neptune X
≈ 20
moon of Neptune
[5]
From 1 to 19 km
This list contains some examples of Solar System objects between 1 and 19 km in radius. This is a common size for asteroids, comets and irregular moons.
Body[note 1]
Image
Radius[note 2] (km)
Mass (1015 kg)
Type – notes
Refs[note 5] r·M
Urda 167
19.968±0.132
belt asteroid type S
[189]
Hydra Pluto III
19.65
48±42
moon of Pluto
[190]·[191]
Siarnaq Saturn XXIX
19.65±2.95
moon of Saturn
[174]
Koronis 158
19.513±0.231
belt asteroid type S
[192]
Nix Pluto II
19.017
45±40
moon of Pluto
[190]·[191]
Ganymed 1036
18.838±0.199
≈ 167±318
Amor asteroid type S
[111]·[112]
Okyrhoe 52872
18±0.6
centaur
[193]
Helene Saturn XII
17.6±0.4
moon of Saturn; Dione trojan (L4)
[57]
Sinope Jupiter IX
17.5±0.3
moon of Jupiter
[174]
Hippocamp Neptune XIV
17.4±1
≈ 50
moon of Neptune
[116]·[116]
Leucus 11351
17.078±0.323
Jupiter trojan (L4) type D
[111]
Stephano Uranus XX
≈ 16
moon of Uranus
[5]
Arrokoth 486958
15.85±0.25
cubewano; contact binary
[194]
Ida 243
15.7
42±6
belt asteroid type S; binary
[195]·[196]
Atlas Saturn XV
15.1±0.9
6.6
moon of Saturn
[57]·[57]
Ananke Jupiter XII
14.55±0.3
moon of Jupiter
[174]
Albiorix Saturn XXVI
14.3±2.7
moon of Saturn
[174]
Pan Saturn XVIII
14.1±1.3
4.95
moon of Saturn
[57]·[197]
Linus Kalliope I
14±1
≈ 60
asteroid moon of 22 Kalliope
[198]·[199]
Dioretsa 20461
14±3
centaur; damocloid
[200]
Perdita Uranus XXV
13±1
moon of Uranus
[5]
Telesto Saturn XIII
12.4±0.4
moon of Saturn; Tethys trojan (L4)
[57]
Mab Uranus XXVI
12±1
moon of Uranus
[5]
Phobos Mars I
11.1±0.15
10.659
moon of Mars
[201]·[202]
Paaliaq Saturn XX
≈ 11
moon of Saturn
[5]
Francisco Uranus XXII
≈ 11
moon of Uranus
[5]
Leda Jupiter XIII
10.75±0.85
moon of Jupiter
[174]
Calypso Saturn XIV
10.7±0.7
moons of Saturn; Tethys trojan (L5)
[57]
Polymele 15094
10.548±0.068
Jupiter trojan (L4) type P
[114]
Margaret Uranus XXIII
≈ 10
moon of Uranus
[5]
Ferdinand Uranus XXIV
≈ 10
moon of Uranus
[5]
Cupid Uranus XXVII
9±1
moon of Uranus
[5]
Ymir Saturn XIX
≈ 9
moon of Saturn
[5]
Trinculo Uranus XXI
≈ 9
moon of Uranus
[5]
Eros 433
8.42±0.02
6.687±0.003
Amor asteroid type S
[203]·[203]
Adrastea Jupiter XV
8.2±2
moon of Jupiter
[5]
Kiviuq Saturn XXIV
≈ 8
moon of Saturn
[5]
Tarvos Saturn XXI
≈ 7.5
moon of Saturn
[5]
Kerberos Pluto IV
≈ 6.333
16±9
moon of Pluto
[204]·[205]
Gaspra 951
6.266
20–30
belt asteroid type S
Deimos Mars II
6.2±0.18
1.476
moon of Mars
[5]·[206]
Skamandrios Hektor I
6±1.5
asteroid moon of 624 Hektor
[109]
Ijiraq Saturn XXII
≈ 6
moon of Saturn
[5]
Halley's Comet 1P
5.75
0.22
comet
[207]·[208]
Styx Pluto V
≈ 5.5
≈ 7.65
moon of Pluto
[204]·[205]
Romulus Sylvia I
5.4±2.8
asteroid moon of 87 Sylvia
[209]
Masursky 2685
5.372±0.085
belt asteroid type S
[210]
Erriapus Saturn XXVIII
≈ 5
moon of Saturn
[5]
Callirrhoe Jupiter XVII
4.8±0.65
moon of Jupiter
[174]
Alexhelios Kleopatra I
4.45±0.8
asteroid moon of 216 Kleopatra
[211]
Esclangona 1509
4.085±0.3
inner belt asteroid type S; binary
[212]
Themisto Jupiter XVIII
≈ 4
moon of Jupiter
[5]
Daphnis Saturn XXXV
3.8±0.8
0.077±0.015
moon of Saturn
[57]·[57]
Petit-Prince Eugenia I
3.5±1
asteroid moon of 45 Eugenia
[213]
Praxidike Jupiter XXVII
3.5±0.35
moon of Jupiter
[174]
Bestla Saturn XXXIX
≈ 3.5
moon of Saturn
[5]
Remus Sylvia II
≈ 3.5
asteroid moon of 87 Sylvia
[209]
Kalyke Jupiter XXIII
3.45±0.65
moon of Jupiter
[174]
Cleoselene Kleopatra II
3.45±0.8
asteroid moon of 216 Kleopatra
[211]
S/2019 (31) 1 Euphrosyne I
3.35±1.2
asteroid moon of 31 Euphrosyne
[214]
Tempel 1 9P
3±0.1
Jupiter-family comet; Deep Impact flyby and impacted
[215]
Phaethon 3200
2.9
Apollo asteroid type F
[216]
1999 JM8 53319
2.7±0.6
Apollo asteroid type X
[217]
Borrelly 19P
2.66
Jupiter-family comet
[218]
Šteins 2867
2.58±0.084
belt asteroid type E
[111]
Atira 163693
2.4±0.25
Atira asteroid type S; binary
[219]
Annefrank 5535
2.4
belt asteroid type S
[220]
Balam 3749
2.332±0.107
0.51±0.02
belt asteroid type S; trinary
[221]·[222]
Pallene Saturn XXXIII
2.22±0.07
moon of Saturn
[223]
Florence 3122
2.201±0.015
0.079±0.002
Amor asteroid type S; trinary
[120]·[224]
Wild 2 81P
2.133
Jupiter family comet
[225]
Litva 2577
2.115
Mars-crosser type EU; trinary
[226]
Churyumov–Gerasimenko 67P
2
0.00998
Jupiter-family comet
[227]·[228]
Donaldjohanson 52246
1.948±0.007
belt asteroid type C
[229]
Cuno 4183
1.826±0.051
Apollo asteroid type S/type Q
[230]
1986 DA 6178
1.575
Amor asteroid type M
[231]
Pichi üñëm Alauda I
1.55±0.45
asteroid moon of 702 Alauda
[232]
Toutatis 4179
1.516
0.0505
Apollo asteroid type S
[233]·[233]
Methone Saturn XXXII
1.45±0.03
moon of Saturn
[223]
Carpo (moon) Jupiter XLVI
1.44
Moon of Jupiter
1998 QE2 285263
1.375
Amor asteroid type S; binary
[234]
Polydeuces Saturn XXXIV
1.3±0.4
moon of Saturn; Dione trojan (L5)
[57]
2001 SN263 153591
1.315±0.2
0.00951±0.00013
Amor asteroid type C; trinary
[235]·[236]
S/2003 (1509) 1 Esclangona I
1.285
asteroid moon of 1509 Esclangona
[237]
APL 132524
≈ 1.25
belt asteroid type S
[238]
Camillo 3752
1.153±0.044
Apollo asteroid type S
[120]
Cruithne 3753
1.036±0.053
Aten asteroid type Q; quasi-satellite of Earth
[239]
Below 1 km
This list contains examples of objects below 1 km in radius. That means that irregular bodies can have a longer chord in some directions, hence the mean radius averages out.
In the asteroid belt alone there are estimated to be between 1.1 and 1.9 million objects with a radius above 0.5 km,[240] many of which are in the range 0.5–1.0 km. Countless more have a radius below 0.5 km.
Very few objects in this size range have been explored or even imaged. The exceptions are objects that have been visited by a probe, or have passed close enough to Earth to be imaged. Radius is by mean geometric radius. Number of digits not an endorsement of significant figures. Mass scale shifts from × 1015 to 109 kg, which is equivalent to one billion kg or 1012 grams (Teragram – Tg).
Currently most of the objects of mass between 109 kg to 1012 kg (less than 1000 teragrams (Tg)) listed here are near-Earth asteroids (NEAs). The Aten asteroid 1994 WR12 has less mass than the Great Pyramid of Giza, 5.9 × 109 kg.
For more about very small objects in the Solar System, see meteoroid, micrometeoroid, cosmic dust, and interplanetary dust cloud. (See also Visited/imaged bodies.)
Body[note 1]
Image
Radius[note 2] (m)
Mass (109 kg)
Type – notes
Refs[note 5] r·M
Ra-Shalom 2100
990±25
Aten asteroid type C
[118]
Geographos 1620
980±30
Apollo asteroid type S
[111]
Midas 1981
975±35
Apollo asteroid type S
[118]
Mithra 4486
924.5±11
Apollo asteroid type S
[120]
1998 OH 12538
831.5±164.5
Apollo asteroid type S
[120]
Tantalus 2102
824.5±22.5
Apollo asteroid type Q
[241]
Braille 9969
820
Mars-crosser type Q
[242]
2005 GO21 308242
780
Aten asteroid type S
[243]
Apollo 1862
≈ 750
Apollo asteroid type Q
[244]
1999 JD6 85989
731±10.5
Aten asteroid type K; contact binary
[245]
Icarus 1566
730
Apollo asteroid type S
[246]
Dactyl Ida I
700
asteroid moon of 243 Ida
[247]
Castalia 4769
700
Apollo asteroid type S; contact binary
[248]
2007 PA8 214869
675±70
Apollo asteroid type Q
[249]
Moshup 66391
658.5±20
2490±54
Aten asteroid type S; binary
[250]·[251]
1950 DA 29075
653
≈ 2000
Apollo asteroid type S
[252]·[253]
2006 HY51 394130
609±114
Apollo asteroid
[254]
Hartley 2 103P
570±80
≈ 300
Jupiter-family comet
[255]·[255]
2003 SD220 163899
515
Aten asteroid type S
[256]
Nyx 3908
500±75
Amor asteroid type V
[257]
2001 WN5 153814
466±5.5
Apollo asteroid
[258]
2017 YE5
450±25
Apollo asteroid type S; binary
[259]
Ryugu 162173
432.5±7.5
≈ 450
Apollo asteroid type Cg
[260]·[261]
1997 AE12 162058
423.5±6.5
Amor asteroid type S
[262]
2014 JO25
409
Apollo asteroid type S; contact binary
[263]
Hermes 69230
400±50
Apollo asteroid type Sq
[264]
Didymos 65803
390±4
527
Apollo asteroid type Xk; binary
[265]·[266]
Aten 2062
365±15
Aten asteroid type S
[111]
Aegaeon Saturn LIII
330±60
moon of Saturn
[223]
2015 TB145
325±15
Apollo asteroid type S
[267]
1994 CC 136617
310±30
266±32.9
Apollo asteroid type Sq; trinary
[268]·[269]
2001 WR1 172034
315.5±9
Amor asteroid type S
[270]
Golevka 6489
265±15
Apollo asteroid type Q
[271]
Bennu 101955
262.5±37.5
78±9
Apollo asteroid type B
[272]·[273]
2000 WO107 153201
255±41.5
Aten asteroid type X
[274]
2002 CU11 163132
230±8.5
Apollo asteroid
[275]
Squannit Moshup I
225.5±13.5
asteroid moon of 66391 Moshup
[251]
2014 HQ124
204.5±84
Aten asteroid type S
[111]
2013 YP139
201±13
Apollo asteroid
[276]
2008 EV5 341843
200±7
Aten asteroid type X/type C
[120]
2006 DP14 388188
≈ 200
Apollo asteroid type S; contact binary
[277]
1988 EG 6037
199.5±1.35
Apollo asteroid type S
[278]
2010 TK7
189.5±61.5
Aten asteroid; Earth trojan (L4)
[279]
2006 SU49 292220
≈ 188.5
≈ 73
Apollo asteroid
[280]·[280]
2005 YU55 308635
180±20
Apollo asteroid type C
[281]
2010 SO16
178.5±63
Apollo asteroid; co-orbital with Earth
[276]
Itokawa 25143
173
35.1±1.05
Apollo asteroid type S
[282]·[282]
Apophis 99942
162.5±7.5
≈ 61
Aten asteroid type Sq
[283]·[284]
S/2009 S 1
≈ 150
moon of Saturn
[285]
2005 WK4
142
Apollo asteroid type S
[286]
2004 BL86 357439
131.5±13
Apollo asteroid type V; binary
[287]
2007 TU24
125
Apollo asteroid type S
[288]
2002 VE68
≈ 118
Aten asteroid type X; co-orbital with Venus
[289]
2011 UW158 436724
110±20
Apollo asteroid type S
[290]
Dimorphos Didymos I
85±15
asteroid moon of 65803 Didymos
[266]
2017 BQ6
78
Apollo asteroid type S
[291]
YORP 54509
61.8
Apollo asteroid type S
[292]
Kamoʻoalewa 469219
41
Apollo asteroid type S; quasi-satellite of Earth
[293]
Duende 367943
23.75
Aten asteroid type L
[294]
1998 KY26
≈ 15
Apollo asteroid type X
[295]
2012 TC4
11.5
Apollo asteroid type E/type Xe
[296]
2014 RC
≈ 11
Apollo asteroid type Sq
[297]
2010 RF12
≈ 3.5
≈ 0.0005
Apollo asteroid
[298]
2011 MD
3+2 −1
Apollo asteroid/Amor asteroid type S
[299]
2008 TC3
2.05
0.00008
Apollo asteroid type F/type M
[300]·[300]
2023 BU
1.5
Apollo asteroid
[301]
2008 TS26
≈ 0.49
Apollo asteroid
[302]
Gallery
Solar system planets, major moons, and 3 stars of different sizes are shown comparatively in three levels of zoom: one for the rocky planets, one for the gas giants, and one for the stars.
Largest moons of the Solar System to scale.
See also
List of gravitationally rounded objects of the Solar System
List of dwarf planets
List of minor planets
List of natural satellites
List of near-Earth asteroids by distance from Sun
List of Solar System objects most distant from the Sun
List of space telescopes
Lists of astronomical objects
Notes
↑ 1.01.11.21.31.4Radius estimated using equatorial radius and assuming body is spherical
↑ 2.02.1Radius has been determined by various methods, such as optical (Hubble), thermal (Spitzer), or direct imaging via spacecraft
↑Calculated in Wolfram Alpha using semi axes of 1050 × 840 × 537 (Ellipsoid volume: 1.98395×10^9 km3)
↑Best fit, assuming Haumea is in hydrostatic equilibrium
↑ 5.05.15.2Radius estimated by using three radii and assuming body is spheroid
↑The mass estimate is based on the assumed density of 1.2 g/cm3, and a volume of 3.5 ×106 km3 obtained from a detailed shape model in Stooke (1994).[117]
↑ 1.01.11.21.31.41.51.6Name of body, including alternative names using Roman numerals to designate moons (such as "Saturn I" for Mimas), and numbers to designate minor planets
↑ 2.02.12.22.32.42.52.6Mean radius including uncertainties
↑Given as surface gravity (1 bar for gaseous planets)
↑Figures from default source Johnston's Archive—List of Known Trans-Neptunian Objects,[58] if otherwise not mentioned in the References column
↑ 5.05.15.25.35.45.5Reference column specifically for radius (r) and mass (M) citations
References
↑Brown, M.. "The Dwarf Planets". Caltech. http://www.gps.caltech.edu/~mbrown/dwarfplanets/.
↑"Iapetus' peerless equatorial ridge". The Planetary Society. https://www.planetary.org/blogs/emily-lakdawalla/2012/3389.html.
↑"Gǃkúnǁ'hòmdímà and Gǃò'é ǃhú". .lowell.edu. http://www2.lowell.edu/~grundy/abstracts/2019.G-G.html.
↑Britt, D. T.; Consolmagno, G. J.; Merline, W. J. (2006). "Small Body Density and Porosity: New Data, New Insights". Lunar and Planetary Science XXXVII. http://www.lpi.usra.edu/meetings/lpsc2006/pdf/2214.pdf.
↑Williams, D. R. (2007-11-23). "Uranian Satellite Fact Sheet". NASA (National Space Science Data Center). http://nssdc.gsfc.nasa.gov/planetary/factsheet/uraniansatfact.html.
↑ 7.07.17.2Brown, Michael E.. "How many dwarf planets are there in the outer solar system?". California Institute of Technology. http://web.gps.caltech.edu/~mbrown/dps.html.
↑Park, R. S.; Konopliv, A. S.; Bills, B. G.; Rambaux, N.; Castillo-Rogez, J. C.; Raymond, C. A.; Vaughan, A. T.; Ermakov, A. I. et al. (2016). "A partially differentiated interior for (1) Ceres deduced from its gravity field and shape". Nature537 (7621): 515–517. doi:10.1038/nature18955. PMID 27487219. Bibcode: 2016Natur.537..515P.
↑"90377 Sedna". 12 September 2022. https://www.universeguide.com/kuiperbeltobject/316/sedna.
↑ 13.0013.0113.0213.0313.0413.0513.0613.0713.0813.0913.10NASA/JPL, Our Sun, by the numbers Accessed 2020 Oct 22
↑ 14.0014.0114.0214.0314.0414.0514.0614.0714.0814.0914.1014.1114.1214.1314.1414.1514.1614.1714.1814.1914.2014.2114.2214.2314.2414.2514.2614.2714.2814.2914.3014.31NASA/JPL Planets and Pluto: Physical Characteristics Last updated 2020-May-29
↑"By The Numbers | Jupiter - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/jupiter/by-the-numbers/.
↑"By The Numbers | Saturn - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/saturn/by-the-numbers/.
↑"By The Numbers | Uranus - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/uranus/by-the-numbers/.
↑"By the Numbers | Neptune - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/neptune/by-the-numbers/.
↑"By The Numbers | Earth - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/earth/by-the-numbers/.
↑"By the Numbers | Venus - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/venus/by-the-numbers/.
↑"By The Numbers | Mars - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/mars/by-the-numbers/.
↑"By The Numbers | Ganymede - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/jupiter-moons/ganymede/by-the-numbers/.
↑"By the Numbers | Titan - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/saturn-moons/titan/by-the-numbers/.
↑"By The Numbers | Mercury - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/mercury/by-the-numbers/.
↑"By The Numbers | Callisto - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/jupiter-moons/callisto/by-the-numbers/.
↑"By The Numbers | Io - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/jupiter-moons/io/by-the-numbers/.
↑ 28.028.1Planetary Satellite Physical Parameters
↑Moon Fact Sheet
↑"By The Numbers | Earth's Moon - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/earths-moon/by-the-numbers/.
↑"By The Numbers | Europa - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/jupiter-moons/europa/by-the-numbers/.
↑"By The Numbers | Triton - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/neptune-moons/triton/by-the-numbers/.
↑Sicardy, B. (2011). "Size, density, albedo and atmosphere limit of dwarf planet Eris from a stellar occultation". European Planetary Science Congress Abstracts6: 137. Bibcode: 2011epsc.conf..137S. http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-137-8.pdf. Retrieved 2011-09-14.
↑Brown, Michael E.; Schaller, Emily L. (15 June 2007). "The Mass of Dwarf Planet Eris". Science316 (5831): 1585. doi:10.1126/science.1139415. PMID 17569855. Bibcode: 2007Sci...316.1585B.
↑"The size, shape, density and ring of the dwarf planet Haumea". http://www.astrosurf.com/sogorb/occultations/nature24051.pdf.
↑ 36.036.136.236.336.4Ragozzine, D.; Brown, M. E. (2009). "Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)". The Astronomical Journal137 (6): 4766–4776. doi:10.1088/0004-6256/137/6/4766. Bibcode: 2009AJ....137.4766R.
↑Dunham, E. T.; Desch, S. J.; Probst, L. (April 2019). "Haumea's Shape, Composition, and Internal Structure". The Astrophysical Journal877 (1): 11. doi:10.3847/1538-4357/ab13b3. Bibcode: 2019ApJ...877...41D.
↑"By The Numbers | Titania - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/uranus-moons/titania/by-the-numbers/.
↑"By The Numbers | Rhea - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/saturn-moons/rhea/by-the-numbers/.
↑"By The Numbers | Oberon - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/uranus-moons/oberon/by-the-numbers/.
↑M.E. Brown (2013). "On the size, shape, and density of dwarf planet Makemake". The Astrophysical Journal Letters767 (1): L7(5pp). doi:10.1088/2041-8205/767/1/L7. Bibcode: 2013ApJ...767L...7B.
↑Kiss, Csaba; Marton, Gabor; Parker, Alex H.; Grundy, Will; Farkas-Takacs, Aniko; Stansberry, John; Pal, Andras; Muller, Thomas et al. (2019). "The mass and density of the dwarf planet (225088) 2007 OR10". Icarus334: 3–10. doi:10.1016/j.icarus.2019.03.013. Bibcode: 2018DPS....5031102K. Initial publication at the American Astronomical Society DPS meeting #50, with the publication ID 311.02
↑"By The Numbers | Charon -NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/pluto-moons/charon/by-the-numbers/.
↑"By The Numbers | Umbriel - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/uranus-moons/umbriel/by-the-numbers/.
↑"By The Numbers | Ariel - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/uranus-moons/ariel/by-the-numbers/.
↑"By The Numbers | Dione - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/saturn-moons/dione/by-the-numbers/.
↑, Wikidata Q116754015
↑Braga-Ribas, F.Expression error: Unrecognized word "etal". (August 2013). "The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations". The Astrophysical Journal773 (1): 13. doi:10.1088/0004-637X/773/1/26. Bibcode: 2013ApJ...773...26B.
↑"By The Numbers | Tethys - NASA Solar System Exploration". https://solarsystem.nasa.gov/moons/saturn-moons/tethys/by-the-numbers/.
↑Roatsch Jaumann et al. 2009, p. 765, Tables 24.1–2
↑"Agenda - NASA Exploration Science Forum 2015". http://nesf2015.arc.nasa.gov/agenda.
↑Rayman, M. D. (28 May 2015). "Dawn Journal, May 28, 2015". Jet Propulsion Laboratory. http://dawnblog.jpl.nasa.gov/2015/05/28/dawn-journal-may-28-2015/.
↑ 53.053.1"By The Numbers | Ceres - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/dwarf-planets/ceres/by-the-numbers/.
↑ 54.054.154.254.3Brown, Michael E.; Butler, Bryan (2023). "Masses and densities of dwarf planet satellites measured with ALMA". arXiv:2307.04848 [astro-ph.EP].
↑ 55.055.1Grundy, W. M.; Noll, K. S.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Parker, A. H.; Nesvorný, D.; Benecchi, S. D. et al. (2019). "Mutual Orbit Orientations of Transneptunian Binaries". Icarus334: 62–78. doi:10.1016/j.icarus.2019.03.035. ISSN 0019-1035. Bibcode: 2019Icar..334...62G. http://www2.lowell.edu/~grundy/abstracts/preprints/2019.TNB_orbits.pdf. Retrieved 2019-10-26.
↑Rommel, Flavia L.; Braga-Ribas, Felipe; Vara-Lubiano, Mónica; Ortiz, Jose L.; Desmars, Josselin; Morgado, Bruno E.; Benedetti-Rossi, Gustavo; Sicardy, Bruno et al. (28 June 2021). "Evidence of topographic features on (307261) 2002 MS4 surface". European Planetary Science Congress. doi:10.5194/epsc2021-440. Bibcode: 2021EPSC...15..440R. https://meetingorganizer.copernicus.org/EPSC2021/EPSC2021-440.html.
↑ 57.0057.0157.0257.0357.0457.0557.0657.0757.0857.0957.1057.1157.1257.1357.1457.1557.1657.1757.1857.1957.2057.21Thomas, P. C. (July 2010). "Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission". Icarus208 (1): 395–401. doi:10.1016/j.icarus.2010.01.025. Bibcode: 2010Icar..208..395T. http://www.ciclops.org/media/sp/2011/6794_16344_0.pdf. Retrieved 2014-04-12.
↑ 58.058.158.258.358.4Wm. Robert Johnston (25 May 2019). "List of Known Trans-Neptunian Objects". Johnston's Archive. http://www.johnstonsarchive.net/astro/tnoslist.html.
↑ 59.059.159.259.359.459.559.659.759.859.9Vilenius, E. (2014). ""TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations". Astronomy & Astrophysics564: A35. doi:10.1051/0004-6361/201322416. Bibcode: 2014A&A...564A..35V.
↑ 60.060.1Souami, D.Expression error: Unrecognized word "etal". (August 2020). "A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda". Astronomy & Astrophysics643: A125. doi:10.1051/0004-6361/202038526. Bibcode: 2020A&A...643A.125S.
↑ 61.061.1Sheppard, Scott; Fernandez, Yanga; Moullet, Arielle (6 September 2018). "The Albedos, Sizes, Colors and Satellites of Dwarf Planets Compared with Newly Measured Dwarf Planet 2013 FY27". The Astronomical Journal156 (6): 270. doi:10.3847/1538-3881/aae92a. Bibcode: 2018AJ....156..270S.
↑Dias-Oliveira, A.; Sicardy, B.; Ortiz, J. L.; Braga-Ribas, F.; Leiva, R.; Vieira-Martins, R. et al. (July 2017). "Study of the Plutino Object (208996) 2003 AZ84 from Stellar Occultations: Size, Shape, and Topographic Features". The Astronomical Journal154 (1): 13. doi:10.3847/1538-3881/aa74e9. Bibcode: 2017AJ....154...22D.
↑Levine, Stephen E.; Zuluaga, Carlos A.; Person, Michael J.; Sickafoose, Amanda A.; Bosh, Amanda A.; Collins, Michael (April 2021). "Occultation of a Large Star by the Large Plutino (28978) Ixion on 2020 October 13 UTC". The Astronomical Journal161 (5): 210. doi:10.3847/1538-3881/abe76d. Bibcode: 2021AJ....161..210L.
↑ 64.064.164.2Vilenius, E. et al. (2012). ""TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects". Astronomy & Astrophysics541: A94. doi:10.1051/0004-6361/201118743. Bibcode: 2012A&A...541A..94V.
↑Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J. P.; Dalle Ore, C. M.; Emery (24 January 2014). "Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared". Astronomy & Astrophysics562: A85. doi:10.1051/0004-6361/201322251. Bibcode: 2014A&A...562A..85L. "cited data from: Lellouch et al., 2013, of estimated diameter of 668 (+154,−86) km".
↑Lacerda, Pedro; Jewitt, David (2006). "Densities of Solar System Objects from their Rotational Lightcurves". The Astronomical Journal133 (4): 1393. doi:10.1086/511772. Bibcode: 2007AJ....133.1393L.
↑ 67.067.167.267.3Fornasier, S. (6 May 2013). "TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9 bright targets at 70–500 μm". Astronomy & Astrophysics555: A15. doi:10.1051/0004-6361/201321329. Bibcode: 2013A&A...555A..15F.
↑M.E. Brown (4 November 2013). "The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets". The Astrophysical Journal778 (2): L34. doi:10.1088/2041-8205/778/2/L34. Bibcode: 2013ApJ...778L..34B.
↑"TNO Results". ERC Lucky Star Project. Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA). https://lesia.obspm.fr/lucky-star/results.php.
↑"Occultation by 2005 RM43 in 23 DEC 2018". ERC Lucky Star Project. Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA). 24 December 2018. https://lesia.obspm.fr/lucky-star/campaigns/results/2005RM43_24_12_2018_prelim2.pdf.
↑Benedetti-Rossi, G.; Sicardy, B.; Buie, M. W.; Ortiz, J. L.; Vieira-Martins, R.; Keller, J. M. et al. (December 2016). "Results from the 2014 November 15th Multi-chord Stellar Occultation by the TNO (229762) 2007 UK126". The Astronomical Journal152 (6): 11. doi:10.3847/0004-6256/152/6/156. Bibcode: 2016AJ....152..156B.
↑Grundy, W.M.; Noll, K.S.; Buie, M.W.; Benecchi, S.D.; Ragozzine, D.; Roe, H.G. (2019). "The Mutual Orbit, Mass, and Density of Transneptunian Binary Gǃkúnǁʼhòmdímà ((229762) 2007 UK126)". Icarus334: 30–38. doi:10.1016/j.icarus.2018.12.037. http://www2.lowell.edu/~grundy/abstracts/2019.G-G.html. Retrieved 2019-04-28.(229762)+2007+UK126)&rft.jtitle=Icarus&rft.aulast=Grundy&rft.aufirst=W.M.&rft.au=Grundy, W.M.&rft.au=Noll, K.S.&rft.au=Buie, M.W.&rft.au=Benecchi, S.D.&rft.au=Ragozzine, D.&rft.au=Roe, H.G.&rft.date=2019&rft.volume=334&rft.pages=30–38&rft_id=info:doi/10.1016/j.icarus.2018.12.037&rft_id=http://www2.lowell.edu/~grundy/abstracts/2019.G-G.html&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_Solar_System_objects_by_size">
↑Gerdes, David W. et al. (2017). "Discovery and Physical Characterization of a Large Scattered Disk Object at 92 AU". The Astrophysical Journal Letters839 (1): L15. doi:10.3847/2041-8213/aa64d8. Bibcode: 2017ApJ...839L..15G.
↑ 74.074.1Fernández-Valenzuela, Estela; Ortiz, Jose Luis; Duffard, René (2015). "2008 OG19: A highly elongated Trans-Neptunian Object". Monthly Notices of the Royal Astronomical Society456 (3): 2354–2360. doi:10.1093/mnras/stv2739. Bibcode: 2016MNRAS.456.2354F.
↑Pál, A. et al. (2015). "Pushing the Limits: K2 Observations of the Trans-Neptunian Objects 2002 GV31 and (278361) 2007 JJ43". The Astrophysical Journal Letters804 (2): L45. doi:10.1088/2041-8205/804/2/L45. Bibcode: 2015ApJ...804L..45P.
↑Szakáts, R.Expression error: Unrecognized word "etal". (2023). "Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry". Astronomy & AstrophysicsL3: 669. doi:10.1051/0004-6361/202245234. Bibcode: 2023A&A...669L...3S.
↑Loader, B.; Hanna, W. (25 February 2019). "(523692) 2014 EZ51, 2019 February 25 occultation". http://www.occultations.org.nz/planet/2019/results/20190225_523692_2014EZ51_UCAC4_322-079801_Plot_Colour.png.
↑ 78.078.1"List of known trans-Neptunian objects". http://www.johnstonsarchive.net/astro/tnoslist.html.
↑"Asteroid (78799) 2002 XW93". Small Bodies Data Ferret. https://sbntools.psi.edu/ferret/SimpleSearch/results.action?targetName=78799.
↑ 80.080.180.280.380.480.5Mommert, Michael; Harris, A. W.; Kiss, C.; Pál, A.; Santos-Sanz, P.; Stansberry, J.; Delsanti, A. et al. (May 2012). "TNOs are cool: A survey of the trans-Neptunian region—V. Physical characterization of 18 Plutinos using Herschel-PACS observations". Astronomy & Astrophysics541: A93. doi:10.1051/0004-6361/201118562. Bibcode: 2012A&A...541A..93M.
↑ 81.081.1Russell, C. T. (2012). "Dawn at Vesta: Testing the Protoplanetary Paradigm". Science336 (6082): 684–686. doi:10.1126/science.1219381. PMID 22582253. Bibcode: 2012Sci...336..684R.
↑Vara-Lubiano, M. et al. (2022). "The multichord stellar occultation on 2019 October 22 by the trans-Neptunian object (84922) 2003 VS2". Astronomy & Astrophysics663: A121. doi:10.1051/0004-6361/202141842. Bibcode: 2022A&A...663A.121V.(84922)+2003+VS2&rft.jtitle=Astronomy+&+Astrophysics&rft.aulast=Vara-Lubiano&rft.aufirst=M.&rft.au=Vara-Lubiano, M.&rft.au=Benedetti-Rossi, G.&rft.au=Santos-Sanz, P.&rft.au=Ortiz, J.+L.&rft.au=Sicardy, B.&rft.au=Popescu, M.&rft.au=Morales, N.&rft.au=Rommel, F.+L.&rft.au=Morgado, B.&rft.date=2022&rft.volume=663&rft.pages=A121&rft_id=info:doi/10.1051/0004-6361/202141842&rft_id=info:bibcode/2022A&A...663A.121V&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_Solar_System_objects_by_size">
↑Marsset, M., Brož, M., Vernazza, P. et al. The violent collisional history of aqueously evolved (2) Pallas. Nat Astron 4, 569–576 (2020). https://doi.org/10.1038/s41550-019-1007-5
↑ 84.0084.0184.0284.0384.0484.0584.0684.0784.0884.0984.1084.1184.1284.1384.1484.1584.1684.1784.1884.1984.2084.2184.2284.2384.2484.2584.2684.2784.2884.2984.3084.3184.3284.3384.3484.3584.3684.3784.38P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics 54, A56
↑Lellouch, E.; Santos-Sanz, P.; Lacerda, P.; Mommert, M.; Duffard, R.; Ortiz, J. L. et al. (September 2013). ""TNOs are Cool": A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations". Astronomy and Astrophysics557: 19. doi:10.1051/0004-6361/201322047. Bibcode: 2013A&A...557A..60L. http://www.aanda.org/articles/aa/pdf/2013/09/aa22047-13.pdf. Retrieved 27 April 2019.
↑ 86.086.1Roatsch, T.; Jaumann, R.; Stephan, K.; Thomas, P. C. (2009). "Cartographic Mapping of the Icy Satellites Using ISS and VIMS Data". Saturn from Cassini-Huygens. pp. 763–781. doi:10.1007/978-1-4020-9217-6_24. ISBN 978-1-4020-9216-9.
↑ 87.087.1Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A. et al. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal132 (6): 2520–2526. doi:10.1086/508812. Bibcode: 2006AJ....132.2520J.
↑Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; Benedetti-Rossi, G.; Duffard, E.; Morales, N. (18 May 2020). "The large Trans-Neptunian Object 2002 TC302 from combined stellar occultation, photometry and astrometry data". Astronomy & AstrophysicsA134: 639. doi:10.1051/0004-6361/202038046.2002+TC302+from+combined+stellar+occultation,+photometry+and+astrometry+data&rft.jtitle=Astronomy+&+Astrophysics&rft.aulast=Ortiz&rft.aufirst=J.+L.&rft.au=Ortiz, J.+L.&rft.au=Santos-Sanz, P.&rft.au=Sicardy, B.&rft.au=Benedetti-Rossi, G.&rft.au=Duffard, E.&rft.au=Morales, N.&rft.date=18+May+2020&rft.volume=A134&rft.pages=639&rft_id=info:doi/10.1051/0004-6361/202038046&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_Solar_System_objects_by_size">
↑Thomas, P. C. (1988). "Radii, shapes, and topography of the satellites of Uranus from limb coordinates". Icarus73 (3): 427–441. doi:10.1016/0019-1035(88)90054-1. Bibcode: 1988Icar...73..427T.
↑Jacobson, R. A.; Campbell, J. K.; Taylor, A. H.; Synnott, S. P. (June 1992). "The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data". The Astronomical Journal103 (6): 2068–2078. doi:10.1086/116211. Bibcode: 1992AJ....103.2068J.
↑Pál, A.; Kiss, C.; Müller, T. G.; Santos-Sanz, P.; Vilenius, E.; Szalai, N.; Mommert, M. et al. (May 2012). ""TNOs are Cool": A survey of the trans-Neptunian region - VII. Size and surface characteristics of (90377) Sedna and 2010 EK139". Astronomy & Astrophysics541: L6. doi:10.1051/0004-6361/201218874. Bibcode: 2012A&A...541L...6P.139&rft.jtitle=Astronomy+&+Astrophysics&rft.aulast=Pál&rft.aufirst=A.&rft.au=Pál, A.&rft.au=Kiss, C.&rft.au=Müller, T.+G.&rft.au=Santos-Sanz, P.&rft.au=Vilenius, E.&rft.au=Szalai, N.&rft.au=Mommert, M.&rft.au=Lellouch, E.&rft.au=Rengel, M.&rft.date=May+2012&rft.volume=541&rft.pages=L6&rft_id=info:doi/10.1051/0004-6361/201218874&rft_id=info:bibcode/2012A&A...541L...6P&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_Solar_System_objects_by_size">
↑ 92.092.192.292.392.492.5Santos-Sanz, P. (2012). ""TNOs are Cool": A Survey of the Transneptunian Region IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel Space Observatory-PACS". Astronomy & Astrophysics541: A92. doi:10.1051/0004-6361/201118541. Bibcode: 2012A&A...541A..92S.
↑ 93.093.1Stansberry, John; Grundy, Will; Brown, Mike; Cruikshank, Dale; Spencer, John; Trilling, David; Margot, Jean-Luc (2008). "Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope". The Solar System Beyond Neptune. University of Arizona Press. pp. 161–179. ISBN 978-0-8165-2755-7. Bibcode: 2008ssbn.book..161S. https://www.lpi.usra.edu/books/ssbn2008/7017.pdf.
↑Sickafoose, A. A.; Bosh, A. S.; Levine, S. E.; Zuluaga, C. A.; Genade, A.; Schindler, K.; Lister, T. A.; Person, M. J. (February 2019). "A stellar occultation by Vanth, a satellite of (90482) Orcus". Icarus319: 657–668. doi:10.1016/j.icarus.2018.10.016. Bibcode: 2019Icar..319..657S.
↑Vernazza, P. et al. (2020). "A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea". Nature Astronomy273 (2): 136–141. doi:10.1038/s41550-019-0915-8. Bibcode: 2020NatAs...4..136V. https://www.eso.org/public/archives/releases/sciencepapers/eso1918/eso1918a.pdf.
↑Alvarez-Candal, A. et al. (November 2014). "Stellar occultation by (119951) 2002 KX14 on April 26, 2012". Astronomy & Astrophysics571 (A48): 8. doi:10.1051/0004-6361/201424648. Bibcode: 2014A&A...571A..48A. https://www.aanda.org/articles/aa/pdf/2014/11/aa24648-14.pdf. Retrieved 14 October 2019.
↑Thirouin, A.; Knoll, K. S.; Ortiz, J. L.; Morales, N. (September 2014). "Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt". Astronomy & Astrophysics569 (A3): 20. doi:10.1051/0004-6361/201423567. Bibcode: 2014A&A...569A...3T. https://www.aanda.org/articles/aa/full_html/2014/09/aa23567-14/aa23567-14.html.
↑"JPL definition of Main-belt Asteroid (MBA)". JPL Solar System Dynamics. http://ssd.jpl.ar.gov/sbdb_help.cgi?class=MBA.[yes|permanent dead link|dead link}}]
↑Thirouin, A.; Ortiz, J. L.; Duffard, R.; Santos-Sanz, P.; Aceituno, F. J.; Morales, N. (2010). "Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs". Astronomy & Astrophysics522: A93. doi:10.1051/0004-6361/200912340. Bibcode: 2010A&A...522A..93T.
↑ 100.0100.1Johnston, Wm. Robert (27 May 2019). "(119979) 2002 WC19". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-119979.html.
↑Hanuš, J. et al. (2020). "(704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body". Astronomy & Astrophysics633: A65. doi:10.1051/0004-6361/201936639. Bibcode: 2020A&A...633A..65H.
↑Johnston, Wm. Robert (31 January 2015). "(450894) 2008 BT18". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-174567.html.
↑Elliot, J. L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C. et al. (2010). "Size and albedo of Kuiper belt object 55636 from a stellar occultation". Nature465 (7300): 897–900. doi:10.1038/nature09109. PMID 20559381. Bibcode: 2010Natur.465..897E. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA541934&Location=U2&doc=GetTRDoc.pdf.
↑Johnston, Wm. Robert (20 September 2014). "(120347) Salacia and Actaea". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-120347.html.
↑ 105.0105.1105.2Johnston, Wm. Robert (8 October 2017). "(47171) Lempo, Paha, and Hiisi". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-47171.html.
↑ 106.0106.1Johnston, Wm. Robert (21 September 2014). "(26308) 1998 SM165 and S/2001 (26308) 1". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-79360.html.
↑Marsset et al. (2022) The equilibrium shape of (65) Cybele: primordial or relic of a large impact?
↑"LCDB Data for (10199) Chariklo". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=10199|Chariklo.
↑ 109.0109.1109.2Marchis, F.; Durech, J.; Castillo-Rogez, J.; Vachier, F.; Cuk, M.; Berthier, J. et al. (March 2014). "The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor". The Astrophysical Journal Letters783 (2): 6. doi:10.1088/2041-8205/783/2/L37. Bibcode: 2014ApJ...783L..37M.
↑ 110.0110.1Johnston, Wm. Robert (20 September 2014). "(79360) Sila-Nunam". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-79360.html.
↑ 111.00111.01111.02111.03111.04111.05111.06111.07111.08111.09111.10111.11111.12111.13111.14111.15111.16111.17111.18111.19111.20111.21111.22111.23111.24111.25111.26111.27111.28Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R. et al. (June 2016). "NEOWISE Diameters and Albedos V1.0". NASA Planetary Data System: EAR–A–COMPIL–5–NEOWISEDIAM–V1.0. Bibcode: 2016PDSS..247.....M. https://sbnarchive.psi.edu/pds3/non_mission/EAR_A_COMPIL_5_NEOWISEDIAM_V1_0/data/neowise_mainbelt.tab. Retrieved 31 October 2018.
↑ 112.00112.01112.02112.03112.04112.05112.06112.07112.08112.09112.10112.11112.12112.13112.14112.15112.16112.17112.18112.19112.20112.21112.22112.23112.24112.25112.26112.27112.28112.29112.30112.31112.32112.33112.34112.35112.36112.37112.38112.39112.40112.41112.42112.43112.44112.45112.46112.47112.48112.49112.50112.51112.52112.53112.54112.55112.56Carry, B. (December 2012). "Density of asteroids". Planetary and Space Science73 (1): 98–118. doi:10.1016/j.pss.2012.03.009. Bibcode: 2012P&SS...73...98C.
↑ 113.0113.1113.2Grundy, W.M. et al. (2007). "The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur". Icarus191 (1): 286–297. doi:10.1016/j.icarus.2007.04.004. Bibcode: 2007Icar..191..286G.
↑ 114.0114.1114.2114.3114.4114.5114.6114.7114.8Tedesco (2004). "Supplemental IRAS Minor Planet Survey (SIMPS)". IRAS-A-FPA-3-RDR-IMPS-V6.0. Planetary Data System. http://www.psi.edu/pds/resource/imps.html.
↑ 115.0115.1115.2115.3115.4Duffard, R.; Pinilla-Alonso, N.; Santos-Sanz, P.; Vilenius, E.; Ortiz, J. L.; Mueller, T. et al. (April 2014). ""TNOs are Cool": A survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 Centaurs". Astronomy and Astrophysics564: 17. doi:10.1051/0004-6361/201322377. Bibcode: 2014A&A...564A..92D.
↑ 116.0116.1116.2116.3116.4116.5Showalter, M. R.; de Pater, I.; Lissauer, J. J.; French, R. S. (2019). "The seventh inner moon of Neptune". Nature566 (7744): 350–353. doi:10.1038/s41586-019-0909-9. PMID 30787452. PMC 6424524. Bibcode: 2019Natur.566..350S. https://www.spacetelescope.org/static/archives/releases/science_papers/heic1904/heic1904a.pdf.
↑Stooke, Philip J. (1994). "The surfaces of Larissa and Proteus". Earth, Moon, and Planets65 (1): 31–54. doi:10.1007/BF00572198. Bibcode: 1994EM&P...65...31S.
↑ 118.00118.01118.02118.03118.04118.05118.06118.07118.08118.09118.10118.11Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan63 (5): 1117–1138. doi:10.1093/pasj/63.5.1117. Bibcode: 2011PASJ...63.1117U.
↑Johnston, Wm. Robert (21 September 2014). "(121) Hermione and S/2002 (121) 1 ("LaFayette")". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-00121.html.
↑Johnston, Wm. Robert (20 September 2014). "(88611) Teharonhiawako and Sawiskera". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-88611.html.
↑Porco, C.C. (1991). "An Explanation for Neptune's Ring Arcs". Science253 (5023): 995–1001. doi:10.1126/science.253.5023.995. PMID 17775342. Bibcode: 1991Sci...253..995P.
↑ 123.0123.1123.2Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; Cabrera, M. S. (10 October 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters759 (1): L8. doi:10.1088/2041-8205/759/1/L8. Bibcode: 2012ApJ...759L...8M.
↑Rojo, P.; Margot, J. L. (February 2011). "Mass and Density of the B-type Asteroid (702) Alauda". The Astrophysical Journal727 (2): 5. doi:10.1088/0004-637X/727/2/69. Bibcode: 2011ApJ...727...69R.
↑Emelyanov, N.V. et al. (2005). "The mass of Himalia from the perturbations on other satellites". Astronomy and Astrophysics438 (3): L33–L36. doi:10.1051/0004-6361:200500143. Bibcode: 2005A&A...438L..33E. https://www.aanda.org/articles/aa/pdf/2005/30/aahe201.pdf.
↑ 126.0126.1126.2Thomas, P. C.; Burns, J. A.; Rossier, L.; Simonelli, D.; Veverka, J.; Chapman, C. R.; Klaasen, K.; Johnson, T. V. et al. (September 1998). "The Small Inner Satellites of Jupiter". Icarus135 (1): 360–371. doi:10.1006/icar.1998.5976. Bibcode: 1998Icar..135..360T.
↑Anderson, J. D.; Johnson, T. V.; Schubert, G.; Asmar, S.; Jacobson, R. A.; Johnston, D.; Lau, E. L.; Lewis, G. et al. (27 May 2005). "Amalthea's Density is Less Than That of Water". Science308 (5726): 1291–1293. doi:10.1126/science.1110422. PMID 15919987. Bibcode: 2005Sci...308.1291A.
↑"In Depth | Makemake - NASA Solar System Exploration". https://solarsystem.nasa.gov/planets/dwarf-planets/makemake/in-depth/.
↑ 129.0129.1Farkas-Takács, A.Expression error: Unrecognized word "etal". (September 2017). "Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations". The Astronomical Journal154 (3): 13. doi:10.3847/1538-3881/aa8365. 119. Bibcode: 2017AJ....154..119F.
↑ 130.0130.1130.2130.3Rabinowitz, David L.; Benecchi, Susan D.; Grundy, William M.; Verbiscer, Anne J.; Thirouin, Audrey (November 2019). "The Complex Rotational Light Curve of (385446) Manwë-Thorondor, a Multi-Component Eclipsing System in the Kuiper Belt". arXiv:1911.08546 [astro-ph.EP].
↑Johnston, Wm. Robert (21 September 2014). "(762) Pulcova". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-00762.html.
↑ 132.0132.1Johnston, Wm. Robert (31 January 2015). "(42355) Typhon and Echidna". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-42355.html.
↑Benecchi, S.D; Noll, K. S.; Grundy, W. M.; Levison, H. F. (2010). "(47171) 1999 TC36, A Transneptunian Triple". Icarus207 (2): 978–991. doi:10.1016/j.icarus.2009.12.017. Bibcode: 2010Icar..207..978B.
↑Pravec, P.; Harris, A. W.; Kusnirak, P.; Galad, A.; Hornoch, K. (2012). "Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations". Icarus221 (1): 365–387. doi:10.1016/j.icarus.2012.07.026. Bibcode: 2012LPICo1667.6089P.
↑Grundy, W. M.; Noll, K. S.; Nimmo, F.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Benecchi, S. D.; Stephens, D. C. et al. (2011). "Five new and three improved mutual orbits of transneptunian binaries". Icarus213 (2): 678. doi:10.1016/j.icarus.2011.03.012. Bibcode: 2011Icar..213..678G. http://es.ucsc.edu/~fnimmo/website/Grundy_KBO.pdf.
↑ 136.0136.1Michalak, G. (2001). "Determination of asteroid masses". Astronomy & Astrophysics374 (2): 703–711. doi:10.1051/0004-6361:20010731. Bibcode: 2001A&A...374..703M.
↑Hui, Man-To; Jewitt, David; Yu, Liang-Liang; Mutchler, Max J. (12 Apr 2022). "Hubble Space Telescope Detection of the Nucleus of Comet C/2014 UN271 (Bernardinelli–Bernstein)". The Astrophysical Journal Letters929 (L12): L12. doi:10.3847/2041-8213/ac626a. Bibcode: 2022ApJ...929L..12H.
↑Buie, Marc W.Expression error: Unrecognized word "etal". (April 2020). "A Single-chord Stellar Occultation by the Extreme Trans-Neptunian Object (541132) Leleākūhonua". The Astronomical Journal159 (5): 230. doi:10.3847/1538-3881/ab8630. 230. Bibcode: 2020AJ....159..230B.
↑ 159.0159.1Baer, James; Steven R. Chesley (2008). "Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris". Celestial Mechanics and Dynamical Astronomy100 (2008): 27–42. doi:10.1007/s10569-007-9103-8. Bibcode: 2008CeMDA.100...27B.
↑Marchis, Franck; P. Descamps; J. Berthier; D. hestroffer; F. vachier; M. Baek et al. (2008). "Main Belt Binary Asteroidal Systems With Eccentric Mutual Orbits". Icarus195 (1): 295–316. doi:10.1016/j.icarus.2007.12.010. Bibcode: 2008Icar..195..295M.
↑ 172.0172.1Johnston, Wm. Robert (20 September 2014). "(58534) Logos and Zoe". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-58534.html.
↑ 174.00174.01174.02174.03174.04174.05174.06174.07174.08174.09174.10174.11Grav, T.Expression error: Unrecognized word "etal". (August 2015). "NEOWISE: Observations of the Irregular Satellites of Jupiter and Saturn". The Astrophysical Journal809 (1): 9. doi:10.1088/0004-637X/809/1/3. 3. Bibcode: 2015ApJ...809....3G.
↑"LCDB Data for (10370)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=10370|.
↑D. K. Yeomans (1997). "Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby". Science278 (5346): 2106–9. doi:10.1126/science.278.5346.2106. PMID 9405343. Bibcode: 1997Sci...278.2106Y.
↑ 190.0190.1Verbiscer, A. J.; Porter, S. B.; Buratti, B. J.; Weaver, H. A.; Spencer, J. R.; Showalter, M. R.; Buie, M. W.; Hofgartner, J. D. et al. (2018). "Phase Curves of Nix and Hydra from the New Horizons Imaging Cameras". The Astrophysical Journal852 (2): L35. doi:10.3847/2041-8213/aaa486. Bibcode: 2018ApJ...852L..35V.
↑ 191.0191.1Stern, S. A. et al. (15 October 2015). "The Pluto system: Initial results from its exploration by New Horizons". Science350 (6258): aad1815. doi:10.1126/science.aad1815. PMID 26472913. Bibcode: 2015Sci...350.1815S.
↑Stern, S.A. (9 January 2019). "Overview of initial results from the reconnaissance flyby of a Kuiper Belt planetesimal: 2014 MU69". arXiv:1901.02578 [astro-ph.EP]. Invalid |display-authors=0. (help)
↑Britt, D. T.; Yeomans, D. K.; Housen, K.; Consolmagno, G. (2002). "Asteroid Density, Porosity, and Structure". Asteroids III: 485–500. doi:10.2307/j.ctv1v7zdn4.37. Bibcode: 2002aste.book..485B. http://www.lpi.usra.edu/books/AsteroidsIII/pdf/3022.pdf. Retrieved 2008-10-27.
↑Britt et al. 2002, p. 486
↑Porco, C. C. (2007). "Saturn's Small Inner Satellites: Clues to Their Origins". Science318 (5856): 1602–1607. doi:10.1126/science.1143977. PMID 18063794. Bibcode: 2007Sci...318.1602P.
↑Descamps, P.; Marchis, F. et al. (2008). "New determination of the size and bulk density of the binary asteroid 22 Kalliope from observations of mutual eclipses". Icarus196 (2): 578–600. doi:10.1016/j.icarus.2008.03.014. Bibcode: 2008Icar..196..578D.
↑F. Marchis (2003). "A three-dimensional solution for the orbit of the asteroidal satellite of 22 Kalliope". Icarus165 (1): 112–120. doi:10.1016/S0019-1035(03)00195-7. Bibcode: 2003Icar..165..112M.
↑Harris, Alan W.; Delbó, Marco; Binzel, Richard P.; Davies, John K.; Roberts, Julie; Tholen, David J.; Whiteley, Robert J. (1 October 2001). "Visible to Thermal-Infrared Spectrophotometry of a Possible Inactive Cometary Nucleus". Icarus153 (2): 332–337. doi:10.1006/icar.2001.6687. Bibcode: 2001Icar..153..332H.
↑"Phobos In Depth". NASA Solar System Exploration. 25 April 2019. https://solarsystem.nasa.gov/moons/mars-moons/phobos/in-depth/.
↑"Phobos By the Numbers". NASA Solar System Exploration. 25 April 2019. https://solarsystem.nasa.gov/moons/mars-moons/phobos/by-the-numbers/.
↑ 203.0203.1Yeomans, D. K.; Antreasian, P. G.; Barriot, J.-P.; Chesley, S. R.; Dunham, D. W.; Farquhar, R. W. et al. (September 2000). "Radio Science Results During the NEAR-Shoemaker Spacecraft Rendezvous with Eros". Science289 (5487): 2085–2088. doi:10.1126/science.289.5487.2085. ISSN 0036-8075. PMID 11000104. Bibcode: 2000Sci...289.2085Y.
↑ 204.0204.1"Special Session: Planet 9 from Outer Space - Pluto Geology and Geochemistry". Lunar and Planetary Institute. 25 March 2016. https://www.youtube.com/watch?v=ZtoLw0KWzsU?t=7470.
↑"Deimos By the Numbers". NASA Solar System Exploration. 25 April 2019. https://solarsystem.nasa.gov/moons/mars-moons/deimos/by-the-numbers/.
↑"What Have We Learned About Halley's Comet?". Astronomical Society of the Pacific (No. 6 – Fall 1986). 1986. http://www.astrosociety.org/education/publications/tnl/06/06.html.
↑G. Cevolani; G. Bortolotti; A. Hajduk (1987). "Halley, comet's mass loss and age". Il Nuovo Cimento C (Italian Physical Society) 10 (5): 587–591. doi:10.1007/BF02507255. Bibcode: 1987NCimC..10..587C.
↑ 209.0209.1Fang, Julia; Margot, Jean-Luc; Rojo, Patricio (16 July 2012). "Orbits, Masses, and Evolution of Main Belt Triple (87) Sylvia". The Astronomical Journal144 (2): 70. doi:10.1088/0004-6256/144/2/70. Bibcode: 2012AJ....144...70F.
↑ 211.0211.1Johnston, Wm. Robert (21 September 2014). "(216) Kleopatra, Alexhelios, and Cleoselene". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-00216.html.
↑Agle, D. C.; Brown, Dwayne; Farukhi, Suraiya (22 December 2017). "Arecibo Radar Returns with Asteroid Phaethon Images". NASA. https://www.jpl.nasa.gov/news/news.php?feature=7030.
↑Reddy, Vishnu; Gaffey, Michael J.; Abell, Paul A.; Hardersen, Paul S. (May 2012). "Constraining albedo, diameter and composition of near-Earth asteroids via near-infrared spectroscopy". Icarus219 (1): 382–392. doi:10.1016/j.icarus.2012.03.005. Bibcode: 2012Icar..219..382R.
↑Weaver, H. A.; Stern, S.A.; Parker, J. Wm. (2003). "Hubble Space Telescope STIS Observations of Comet 19P/BORRELLY during the Deep Space 1 Encounter". The Astronomical Journal (The American Astronomical Society) 126 (1): 444–451. doi:10.1086/375752. Bibcode: 2003AJ....126..444W.
↑Johnston, Wm. Robert (19 February 2017). "(163693) Atira". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-163693.html.
↑Wm. Robert Johnston (2009-01-13). "(3749) Balam, S/2002 (3749) 1, and third component". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-03749.html.
↑ 223.0223.1223.2Thomas, P. C.; Burns, J. A.; Tiscareno, M. S.; Hedman, M. M.; Helfenstein, P. (2013). "Saturn's Mysterious Arc-Embedded Moons: Recycled Fluff?". p. 1598. http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1598.pdf. Retrieved 8 June 2019.
↑Johnston, Wm. Robert (27 May 2019). "(3122) Florence". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-03122.html.
↑"Comet 81P/Wild 2". The Planetary Society. http://www.planetary.org/explore/topics/asteroids_and_comets/wild2.html.
↑"LCDB Data for (2577)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=2577|.
↑Pätzold, M. et al. (4 February 2016). "A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field". Nature530 (7588): 63–65. doi:10.1038/nature16535. PMID 26842054. Bibcode: 2016Natur.530...63P.
↑Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Dailey, J. et al. (November 2011). "Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters". The Astrophysical Journal741 (2): 20. doi:10.1088/0004-637X/741/2/68. Bibcode: 2011ApJ...741...68M.
↑Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012). "Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations". Icarus221 (1): 365–387. doi:10.1016/j.icarus.2012.07.026. Bibcode: 2012Icar..221..365P.
↑Johnston, Wm. Robert (21 September 2014). "(702) Alauda and Pichi unem". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-00702.html.
↑ 233.0233.1Huang, Jiangchuan; Ji, Jianghui; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi (2013). "The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2". Scientific Reports (Nature Research) 3 (3411): 3411. doi:10.1038/srep03411. PMID 24336501. Bibcode: 2013NatSR...3E3411H.
↑Dr. Lance A. M. Benner (28 May 2013). "(285263) 1998 QE2 Goldstone Radar Observations Planning". NASA/JPL Asteroid Radar Research. http://echo.jpl.nasa.gov/asteroids/1998QE2/1998QE2_planning.html.
↑Fang, Julia; Margot, Jean-Luc; Brozovic, Marina; Nolan, Michael C.; Benner, Lance A. M.; Taylor, Patrick A. (May 2011). "Orbits of Near-Earth Asteroid Triples 2001 SN263 and 1994 CC: Properties, Origin, and Evolution". The Astronomical Journal141 (5): 15. doi:10.1088/0004-6256/141/5/154. Bibcode: 2011AJ....141..154F.
↑Johnston, Wm. Robert (21 September 2014). "(153591) 2001 SN263, "Beta", and "Gamma"". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-153591.html.
↑Johnston, Wm. Robert (21 September 2014). "(1509) Esclangona and S/2003 (1509) 1". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-01509.html.
↑"New Horizons Mission to Pluto". Technology Org. 18 July 2015. https://www.technology.org/2015/07/18/new-horizons-mission-to-pluto/.
↑Tedesco, Edward; Metcalfe, Leo (4 April 2002). "New study reveals twice as many asteroids as previously believed" (Press release). European Space Agency. Archived from the original on 6 March 2023. Retrieved 20 October 2012.
↑"LCDB Data for (9969) Braille". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=9969|Braille.
↑"LCDB Data for (308242)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=308242|.
↑"JPL Small-Body Database Browser: 1862 Apollo (1932 HA)". http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1862.
↑Greenberg, Adam H.; Margot, Jean-Luc; Verma, Ashok K.; Taylor, Patrick A.; Naidu, Shantanu P.; Brozovic, Marina. et al. (March 2017). "Asteroid 1566 Icarus's Size, Shape, Orbit, and Yarkovsky Drift from Radar Observations". The Astronomical Journal153 (3): 16. doi:10.3847/1538-3881/153/3/108. Bibcode: 2017AJ....153..108G.
↑Chapman, Clark R. (October 1996). "S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida". Meteoritics31 (6): 699–725. doi:10.1111/j.1945-5100.1996.tb02107.x. Bibcode: 1996M&PS...31..699C.
↑Brozovic, Marina; Benner, Lance A. M.; Magri, Christopher; Scheeres, Daniel J.; Busch, Michael W.; Giorgini, Jon D. (April 2017). "Goldstone radar evidence for short-axis mode non-principal-axis rotation of near-Earth asteroid (214869) 2007 PA8". Icarus286: 314–329. doi:10.1016/j.icarus.2016.10.016. Bibcode: 2017Icar..286..314B.
↑ 251.0251.1Johnston, Wm. Robert (20 September 2014). "(66391) Moshup and Squannit". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-66391.html.
↑Busch, Michael W.; Giorgini, Jon D.; Ostro, Steven J.; Benner, Lance A. M.; Jurgens, Raymond F.; Rose, Randy (October 2007). "Physical modeling of near-Earth Asteroid (29075) 1950 DA". Icarus190 (2): 608–621. doi:10.1016/j.icarus.2007.03.032. Bibcode: 2007Icar..190..608B. https://echo.jpl.nasa.gov/asteroids/29075_1950DA/busch.etal.2007.1950da.pdf.
↑ 255.0255.1Lisse, C. M. et al. (2009). "Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2". Publications of the Astronomical Society of the Pacific121 (883): 968–975. doi:10.1086/605546. Bibcode: 2009PASP..121..968L.
↑"LCDB Data for (163899)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=163899|.
↑"LCDB Data for 2017 YE5". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=0|2017+YE5.
↑Müller, T. G.; Durech, J.; Ishiguro, M.; Mueller, M.; Krühler, T.; Yang, H. (March 2017). "Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object's spin-axis orientation". Astronomy and Astrophysics599: 25. doi:10.1051/0004-6361/201629134. Bibcode: 2017A&A...599A.103M.
↑Clark, Stephen (6 September 2018). "Hayabusa 2 team sets dates for asteroid landings – Spaceflight Now". https://spaceflightnow.com/2018/09/06/hayabusa-2-team-sets-dates-for-asteroid-landings.
↑Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T. et al. (September 2016). "NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos". The Astronomical Journal152 (3): 12. doi:10.3847/0004-6256/152/3/63. Bibcode: 2016AJ....152...63N.
↑"LCDB Data for 2014 JO25". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=0|2014+JO25.
↑Marchis, F.Expression error: Unrecognized word "etal". (November 2012). "Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations". Icarus221 (2): 1130–1161. doi:10.1016/j.icarus.2012.09.013. Bibcode: 2012Icar..221.1130M.
↑ 266.0266.1Johnston, Wm. Robert (20 September 2014). "(65803) Didymos". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-65803.html.
↑Müller, T. G.; Marciniak, A.; Butkiewicz-Bąk, M.; Duffard, R.; Oszkiewicz, D.; Käufl, H. U.; Szakáts, R.; Santana-Ros, T. et al. (February 2017). "Large Halloween asteroid at lunar distance". Astronomy & Astrophysics598: A63. doi:10.1051/0004-6361/201629584. Bibcode: 2017A&A...598A..63M. https://www.aanda.org/articles/aa/pdf/2017/02/aa29584-16.pdf. Retrieved 9 June 2019.
↑Brozovic, Marina; Benner, Lance A. M.; Taylor, Patrick A.; Nolan, Michael C. (November 2011). "Radar and optical observations and physical modeling of triple near-Earth Asteroid (136617) 1994 CC". Icarus216 (1): 241–256. doi:10.1016/j.icarus.2011.09.002. Bibcode: 2011Icar..216..241B.
↑Johnston, Wm. Robert (21 September 2014). "(136617) 1994 CC, "Beta", and "Gamma"". Johnston's Archive. http://www.johnstonsarchive.net/astro/astmoons/am-136617.html.
↑Nolan, M. C.; Magri, C. (2013). "Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations". Icarus226 (1): 629–640. doi:10.1016/j.icarus.2013.05.028. ISSN 0019-1035. Bibcode: 2013Icar..226..629N. http://www.escholarship.org/uc/item/6mh8b2t5.
↑ 276.0276.1Nugent, C. R.; Mainzer, A.; Masiero, J.; Bauer, J.; Cutri, R. M.; Grav, T. et al. (December 2015). "NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos". The Astrophysical Journal814 (2): 13. doi:10.1088/0004-637X/814/2/117. Bibcode: 2015ApJ...814..117N.
↑"Radar Images of near-Earth Asteroid 2006 DP14". Jet Propulsion Laboratory. 25 February 2014. https://www.jpl.nasa.gov/news/news.php?release=2014-060.
↑Trilling, D. E.; Mueller, M.; Hora, J. L.; Fazio, G.; Spahr, T.; Stansberry, J. A. et al. (August 2008). "Diameters and Albedos of Three Subkilometer Near-Earth Objects Derived from Spitzer Observations". The Astrophysical Journal Letters683 (2): L199–L202. doi:10.1086/591668. Bibcode: 2008ApJ...683L.199T.
↑M.W. Busch (31 March 2012). "Shape and Spin of Near-Earth Asteroid 308635 (2005 YU55) From Radar Images and Speckle Tracking". Lunar and Planetary Institute. http://www.lpi.usra.edu/meetings/acm2012/pdf/6179.pdf.
↑ 282.0282.1Fujiwara, A.; Kawaguchi, J.; Yeomans, D. K.; Abe, M.; Mukai, T.; Okada, T. (June 2006). "The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa". Science312 (5778): 1330–1334. doi:10.1126/science.1125841. PMID 16741107. Bibcode: 2006Sci...312.1330F. https://www.researchgate.net/publication/7042075. Retrieved 8 June 2019.
↑"A Small Find Near Equinox". Cassini Solstice Mission. Jet Propulsion Laboratory. 7 August 2009. http://saturn.jpl.nasa.gov/photos/imagedetails/index.cfm?imageId=3617.
↑"LCDB Data for (277475)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=277475|.
↑Reddy, Vishnu; Gary, Bruce L.; Sanchez, Juan A.; Takir, Driss; Thomas, Cristina A.; Hardersen, Paul S. (September 2015). "The Physical Characterization of the Potentially Hazardous Asteroid 2004 BL86: A Fragment of a Differentiated Asteroid". The Astrophysical Journal811 (1): 10. doi:10.1088/0004-637X/811/1/65. Bibcode: 2015ApJ...811...65R.
↑"NASA Scientists Get First Images of Earth Flyby Asteroid". Jet Propulsion Laboratory. 25 January 2008. http://www.jpl.nasa.gov/news/news.cfm?release=2008-014.
↑"LCDB Data for 2002 VE68". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=0|2002+VE68.
↑Bruce L., Gary (January 2016). "Unusual Properties for the NEA (436724) 2011 UW158". The Minor Planet Bulletin43 (1): 33–38. ISSN 1052-8091. Bibcode: 2016MPBu...43...33G.
↑"LCDB Data for 2017 BQ6". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=0|2017+BQ6.
↑Taylor, Patrick A. (13 April 2007). "Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect". Science316 (5822): 274–277. doi:10.1126/science.1139038. PMID 17347415. Bibcode: 2007Sci...316..274T. http://www.astro.cornell.edu/~jlm/publications/Taylor07.science316.yorp.pdf.
↑"LCDB Data for (469219)". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/GenerateALCDEFPage_Local.php?AstInfo=469219|.
↑Dr. Lance A. M. Benner (13 January 2013). "2012 DA14 Goldstone Radar Observations Planning". NASA/JPL Asteroid Radar Research. http://echo.jpl.nasa.gov/asteroids/2012DA14/2012DA14_planning.html.2012+DA14+Goldstone+Radar+Observations+Planning&rft.atitle=&rft.aulast=Dr.+Lance+A.+M.+Benner&rft.au=Dr.+Lance+A.+M.+Benner&rft.date=13+January+2013&rft.pub=NASA/JPL+Asteroid+Radar+Research&rft_id=http://echo.jpl.nasa.gov/asteroids/2012DA14/2012DA14_planning.html&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_Solar_System_objects_by_size">
↑Ostro, Steven J.; Pravec, Petr; Benner, Lance A. M.; Hudson, R. Scott; Sarounová, Lenka; Hicks, Michael D. (June 1999). "Radar and Optical Observations of Asteroid 1998 KY26". Science285 (5427): 557–559 (SciHomepage). doi:10.1126/science.285.5427.557. PMID 10417379. Bibcode: 1999Sci...285..557O.
↑"The 2012 TC4 Observing Campaign – Radar observations UPDATE October 12, 2017". University of Maryland. http://2012tc4.astro.umd.edu/References/TC4RadarUpdate.txt.
↑"Reports of Meteorite Strike in Nicaragua and Update on Asteroid 2014 RC". NASA/JPL Near-Earth Object Program Office. http://neo.jpl.nasa.gov/news/news185.html.
↑Mommert, M. (19 June 2014). "Physical properties of near-earth asteroid 2011 MD". The Astrophysical Journal Letters789 (1): L22. doi:10.1088/2041-8205/789/1/L22. Bibcode: 2014ApJ...789L..22M.
↑ 300.0300.1Jenniskens, P. (2009). "The impact and recovery of asteroid 2008 TC3". Nature458 (7237): 485–488. doi:10.1038/nature07920. PMID 19325630. Bibcode: 2009Natur.458..485J.
↑"archive.ph". https://cneos.jpl.nasa.gov/ca/.
↑"Asteroid 2008 TS26". Asteroids Near Earth. https://www.asteroidsnear.com/asteroid-2008-ts26-1490.
Further reading
NASA Planetary Data System (PDS)
Asteroids with Satellites
Minor Planet discovery circumstances
Supplemental IRAS Minor Planet Survey (SIMPS) and IRAS Minor Planet Survey (IMPS)
SIMPS & IMPS (V6, additional, from here)
Asteroid Data Archive Archive Planetary Science Institute
External links
Planetary fact sheets
Asteroid fact sheet
v
t
e
Solar System
Sun
Mercury
Venus
Earth
Mars
Ceres
Jupiter
Saturn
Uranus
Neptune
Pluto
Haumea
Makemake
Eris
Planets
Terrestrial planets
Mercury
Venus
Earth
Mars
Giant planets
Jupiter
Saturn
Uranus
Neptune
Dwarf planets
Ceres
Pluto
Haumea
Makemake
Eris
Rings
Jovian
Saturnian (Rhean)
Charikloan
Chironean
Uranian
Neptunian
Haumean
Moons
Terrestrial
Moon
other near-Earth objects
Martian
Phobos
Deimos
Jovian
Ganymede
Callisto
Io
Europa
all 79
Saturnian
Titan
Rhea
Iapetus
Dione
Tethys
Enceladus
Mimas
Hyperion
Phoebe
all 82
Uranian
Titania
Oberon
Umbriel
Ariel
Miranda
all 27
Neptunian
Triton
Proteus
Nereid
all 14
Plutonian
Charon
Nix
Hydra
Kerberos
Styx
Eridian
Dysnomia
Haumean
Hiʻiaka
Namaka
Makemakean
S/2015 (136472) 1
Exploration (outline)
Colonization
Discovery
astronomy
historical models
timeline
Human spaceflight
space stations
list
Space probes
timeline
list
Mercury
Venus
Moon
mining
Mars
Ceres
Asteroids
mining
Comets
Jupiter
Saturn
Uranus
Neptune
Pluto
Deep space
Hypothetical objects
Fifth giant
Nemesis
Phaeton
Planet Nine
Planet V
Planet X
Theia
Tyche
Vulcan
Vulcanoids
Subsatellites
Lists
Comets
Dwarf planets (possible)
Gravitationally rounded objects
Minor planets
names
Natural satellites
Solar System models
Solar System objects
by size
by discovery date
Small Solar System bodies
Comets
Damocloids
Meteoroids
Minor planets
moons
Planetesimal
Mercury-crossers
Venus-crossers
Venus trojans
Near-Earth objects
Earth-crossers
Earth trojans
Mars-crossers
Mars trojans
Asteroid belt
Asteroids
Ceres
Pallas
Juno
Vesta
first 1000
families
exceptional
Kirkwood gap
Main-belt comets
Jupiter-crossers
Jupiter trojans
Centaurs
Saturn-crossers
Uranus-crossers
Uranus trojans
Neptune-crossers
Neptune trojans
Cis-Neptunian objects
Trans-Neptunian objects
Plutoids
Kuiper belt
Cubewanos
Plutinos
Detached objects
Hills cloud
Oort cloud
Scattered disc
Sednoids
Formation and evolution
Accretion
Accretion disk
Asteroid belt
Circumplanetary disk
Circumstellar disc
Circumstellar envelope
Cosmic dust
Debris disk
Detached object
Disrupted planet
Excretion disk
Exoplanetary Circumstellar Environments and Disk Explorer
Exozodiacal dust
Extraterrestrial materials
Extraterrestrial sample curation
Giant-impact hypothesis
Gravitational collapse
Hills cloud
Interplanetary dust cloud
Interplanetary medium
Interplanetary space
Interstellar cloud
Interstellar dust
Interstellar medium
Interstellar space
Kuiper belt
List of interstellar and circumstellar molecules
Merging stars
Molecular cloud
Nebular hypothesis
Oort cloud
Outer space
Planetary migration
Planetary system
Planetesimal
Planet formation
Protoplanetary disk
Ring system
Rubble pile
Sample-return mission
Scattered disc
Star formation
Outline of the Solar System
Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local Group → Local Sheet → Virgo Supercluster → Laniakea Supercluster → Observable universe → Universe Each arrow (→) may be read as "within" or "part of".
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/List of Solar System objects by size. Read more