From Handwiki In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.
Let [math]\displaystyle{ f, g, h_j, j=1, \ldots, m }[/math] be real-valued functions defined on a set [math]\displaystyle{ \mathbf{S}_0 \subset \mathbb{R}^n }[/math]. Let [math]\displaystyle{ \mathbf{S} = \{\boldsymbol{x} \in \mathbf{S}_0: h_j(\boldsymbol{x}) \leq 0, j=1, \ldots, m\} }[/math]. The nonlinear program
where [math]\displaystyle{ g(\boldsymbol{x}) \gt 0 }[/math] on [math]\displaystyle{ \mathbf{S} }[/math], is called a fractional program.
A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program. If g is affine, f does not have to be restricted in sign. The linear fractional program is a special case of a concave fractional program where all functions [math]\displaystyle{ f, g, h_j, j=1, \ldots, m }[/math] are affine.
The function [math]\displaystyle{ q(\boldsymbol{x}) = f(\boldsymbol{x}) / g(\boldsymbol{x}) }[/math] is semistrictly quasiconcave on S. If f and g are differentiable, then q is pseudoconcave. In a linear fractional program, the objective function is pseudolinear.
By the transformation [math]\displaystyle{ \boldsymbol{y} = \frac{\boldsymbol{x}}{g(\boldsymbol{x})}; t = \frac{1}{g(\boldsymbol{x})} }[/math], any concave fractional program can be transformed to the equivalent parameter-free concave program[1]
If g is affine, the first constraint is changed to [math]\displaystyle{ t g(\frac{\boldsymbol{y}}{t}) = 1 }[/math] and the assumption that g is positive may be dropped. Also, it simplifies to [math]\displaystyle{ g(\boldsymbol{y}) = 1 }[/math].
The Lagrangian dual of the equivalent concave program is
![]() |
Categories: [Optimization algorithms and methods]