Braunstein-Ghosh-Severini Entropy

From Handwiki

In network theory, the Braunstein-Ghosh-Severini entropy[1][2] (BGS entropy) of a network is the von Neumann entropy of a density matrix given by a normalized Laplacian matrix of the network. This definition of entropy does not have a clear thermodynamical interpretation. The BGS entropy has been used in the context of quantum gravity.[3]

Notes and references

  1. Braunstein, Samuel L.; Ghosh, Sibasish; Severini, Simone (2006). "The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States". Annals of Combinatorics (Springer Science and Business Media LLC) 10 (3): 291–317. doi:10.1007/s00026-006-0289-3. ISSN 0218-0006. 
  2. Anand, Kartik; Bianconi, Ginestra (13 October 2009). "Entropy measures for networks: Toward an information theory of complex topologies". Physical Review E (American Physical Society (APS)) 80 (4): 045102(R). doi:10.1103/physreve.80.045102. ISSN 1539-3755. PMID 19905379. 
  3. Rovelli, Carlo; Vidotto, Francesca (24 February 2010). "Single particle in quantum gravity and Braunstein-Ghosh-Severini entropy of a spin network". Physical Review D (American Physical Society (APS)) 81 (4): 044038. doi:10.1103/physrevd.81.044038. ISSN 1550-7998. 




Retrieved from "https://handwiki.orghttps://handwiki.org/wiki/index.php?title=Physics:Braunstein-Ghosh-Severini_Entropy&oldid=2384754"

Categories: [Quantum mechanical entropy]


Download as ZWI file | Last modified: 03/23/2022 20:25:16 | 7 views
☰ Source: https://handwiki.org/wiki/Physics:Braunstein-Ghosh-Severini_Entropy | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]