Supervisory control is a general term for control of many individual controllers or control loops, such as within a distributed control system. It refers to a high level of overall monitoring of individual process controllers, which is not necessary for the operation of each controller, but gives the operator an overall plant process view, and allows integration of operation between controllers. A more specific use of the term is for a Supervisory Control and Data Acquisition system or SCADA, which refers to a specific class of system for use in process control, often on fairly small and remote applications such as a pipeline transport, water distribution, or wastewater utility system station.
Supervisory control often takes one of two forms. In one, the controlled machine or process continues autonomously. It is observed from time to time by a human who, when deeming it necessary, intervenes to modify the control algorithm in some way. In the other, the process accepts an instruction, carries it out autonomously, reports the results and awaits further commands. With manual control, the operator interacts directly with a controlled process or task using switches, levers, screws, valves etc., to control actuators. This concept was incorporated in the earliest machines which sought to extend the physical capabilities of man. In contrast, with automatic control, the machine adapts to changing circumstances and makes decisions in pursuit of some goal which can be as simple as switching a heating system on and off to maintain a room temperature within a specified range. Sheridan [1] defines supervisory control as follows: "in the strictest sense, supervisory control means that one or more human operators are intermittently programming and continually receiving information from a computer that itself closes an autonomous control loop through artificial effectors to the controlled process or task environment."
Robotics applications have traditionally aimed for automatic control. Automatic control requires sensing and responding appropriately to all combinations of circumstances which can present problems of overwhelming complexity. A supervisory control scheme offers the prospect of solving the automation problem incrementally and leaving those problems unsolved to be handled by the human supervisor.
Communications delay does not have the same impact on this control scheme. All time critical feedback occurs at the slave where the delays are negligible. Instability is thus avoided without modifying the feedback loop. Communications delay, in this case, slows the rate at which an operator can assign tasks to the slave and determine whether those tasks have been successfully carried out.
Original source: https://en.wikipedia.org/wiki/Supervisory control.
Read more |
Categories: [Control theory]