List Of Books About Polyhedra

From Handwiki

Short description: None

This is a list of books about polyhedra.

Polyhedral models

Cut-out kits

  • Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN 1-899618-23-6.  Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.[1]
  • Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN 1-899618-35-X.  More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
  • Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover.  Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
  • Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover. 

Origami

  • Fuse, Tomoko (1990). Unit Origami: Multidimensional Transformations. Japan Publications. ISBN 978-0-87040-852-6. [2]
  • Gurkewitz, Rona; Arnstein, Bennett (1996). 3D Geometric Origami: Modular Origami Polyhedra. Dover. ISBN 9780486135601. [3] Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality, 2002.[4] Beginner's Book of Modular Origami Polyhedra: The Platonic Solids, 2008. Modular Origami Polyhedra, also with Lewis Simon, 2nd ed., 1999.[5]
  • Mitchell, David (1997). Mathematical Origami: Geometrical Shapes by Paper Folding. Tarquin. ISBN 978-1-899618-18-7. [6]
  • Montroll, John (2009). Origami Polyhedra Design. A K Peters. ISBN 9781439871065. [7] A Plethora of Polyhedra in Origami, Dover, 2002.[8]

Other model-making

  • Cundy, H. M.; Rollett, A. P. (1952). Mathematical Models. Clarendon Press.  2nd ed., 1961. 3rd ed., Tarquin, 1981, ISBN 978-0-906212-20-2.[9]
  • Hilton, Peter; Pedersen, Jean (1988). Build Your Own Polyhedra. Addison-Wesley. [10]
  • Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press.  2nd ed., Polyhedron Models for the Classroom, 1974.[11] Spherical Models, 1979.[12] Dual Models, 1983.[13]

Mathematical studies

Introductory level and general audience

  • Akiyama, Jin; Matsunaga, Kiyoko (2015). Treks into Intuitive Geometry: The World of Polygons and Polyhedra. Springer. [14]
  • Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. 23. National Geographic. ISBN 978-84-473-8929-2. 
  • Britton, Jill (2001). Polyhedra Pastimes. Dale Seymour Publishing. ISBN 0-7690-2782-2. [15]
  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press. [16]
  • Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press. [17]
  • Holden, Alan (1971). Shapes, Space and Symmetry.  Dover, 1991.[18]
  • le Masne, Roger (2013) (in French). Les polyèdres, ou la beauté des mathématiques (4th ed.). Self-published. [19]
  • Miyazaki, Koji (1983) (in ja). Katachi to kūkan: Tajigen sekai no kiseki. Wiley.  Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
  • Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN 978-0-442-26496-3. [21]
  • Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press. [22]
  • Radin, Dan (2008). The Platonic Solids Book. Self-published. [23]
  • Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN 978-0802713865. [24]

Textbooks

  • Alexandrov, A. D. (2005). Convex Polyhedra. Springer.  Translated from 1950 Russian edition.[25]
  • Beck, Matthias; Robins, Sinai (2007). Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. 154. Springer.  2nd ed., 2015, ISBN 978-1-4939-2968-9.[26]
  • Brøndsted, Arne (1983). An Introduction to Convex Polytopes. Graduate Texts in Mathematics. 90. Springer. [27]
  • Coxeter, H. S. M. (1948). Regular Polytopes. Methuen.  2nd ed., Macmillan, 1963. 3rd ed., Dover, 1973.[28]
  • Fejes Tóth, László (1964). Regular Figures. Pergamon. [29]
  • Grünbaum, Branko (1967). Convex Polytopes. Wiley.  2nd ed., Springer, 2003.[30]
  • Lyusternik, Lazar (1956) (in ru). Выпуклые фигуры и многогранники. Gosudarstv. Izdat. Tehn.-Teor. Lit..  Translated into English as Convex Figures and Polyhedra by T. Jefferson Smith, Dover, 1963 and by Donald L. Barnett, Heath, 1966.[31]
  • Roman, Tiberiu (1968) (in de). Reguläre und halbreguläre Polyeder. VEB Deutscher Verlag der Wissenschaften. [32]
  • Thomas, Rekha (2006). Lectures in Geometric Combinatorics. American Mathematical Society. [33]
  • Ziegler, Günter M. (1993). Lectures on Polytopes. Springer. [34]

Monographs and special topics

  • Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. 6. University of Toronto Press.  2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.[35]
  • Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press.  2nd ed., 1991.[36]
  • Demaine, Erik; O'Rourke, Joseph (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. [37]
  • Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail (2004). Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and [math]\displaystyle{ \mathbb{Z}_n }[/math]. London: Imperial College Press. doi:10.1142/9781860945489. ISBN 1-86094-421-3. [38]
  • Lakatos, Imre (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press. [39]
  • McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. 172. Cambridge University Press. [40]
  • McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. 92. Cambridge University Press. [41]
  • McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. 3. Cambridge University Press. [42]
  • Nef, Walter (1978) (in de). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik. Herbert Lang. [43]
  • Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. 21. Hindustan Book Agency. [44]
  • Richter-Gebert, Jürgen (1996). Realization Spaces of Polytopes. Lecture Notes in Mathematics. 1643. Springer. [45]
  • Stewart, B. M. (1970). Adventures Among the Toroids. Self-published.  2nd ed., 1980.[46]
  • Wachman, Avraham; Burt, Michael; Kleinmann, M. (1974). Infinite Polyhedra. Technion.  2nd ed., 2005.[47]
  • Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press. [48]
  • Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau.  Translated and corrected from Zalgaller, V. A. (1967) (in ru). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI). 2. Nauka. http://mi.mathnet.ru/znsl1408. [49]
  • Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN 9781799883760. 

Edited volumes

  • Avis, David; Bremner, David; Deza, Antoine, eds (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. 48. American Mathematical Society. 
  • Gabriel, Jean-François, ed (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley. [50]
  • Kalai, Gil; Ziegler, Günter M., eds (2012). Polytopes - Combinatorics and Computation. DMV Seminar. 29. Springer. 
  • Senechal, Marjorie; Fleck, G., eds (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN 0-8176-3351-0.  2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]

History

Early works

Listed in chronological order, and including some works shorter than book length:

  • Plato (in el). Timaeus. 
  • Euclid (in el). Elements. 
  • Pappus of Alexandria (1589). Mathematicae collectiones, liber quintus. apud Franciscum de Franciscis Senensem. https://archive.org/details/bub_gb_YTKUNyiY8sEC/page/n153/mode/2up. 
  • Della Francesca, Piero (1482–1492) (in la). De quinque corporibus regularibus. 
  • Pacioli, Luca (1509) (in it). Divina proportione. 
  • de Bovelles, Charles (1511). De mathematicis corporibus. [52]
  • Dürer, Albrecht (1525) (in de). Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen und gantzen corporen, Viertes Buch. https://de.wikisource.org/wiki/Underweysung_der_Messung,_mit_dem_Zirckel_und_Richtscheyt,_in_Linien,_Ebenen_unnd_gantzen_corporen/Viertes_Buch. 
  • Maurolico, Francesco (1537). Compaginationes solidorum regularium. [53]
  • Jamnitzer, Wenzel (1568). Perspectiva corporum regularium. 
  • Kepler, Johannes (1619) (in la). Harmonices Mundi.  Translated into English as Harmonies of the World by C. G. Wallis (1939).
  • Descartes, René (c. 1630) (in la). De solidorum elementis.  Original manuscript lost; copy by Gottfried Wilhelm Leibniz reprinted and translated in Descartes on Polyhedra, Springer, 1982.
  • Cowley, John Lodge (1758). An Appendix to Euclid's Elements in Seven Books, Containing Forty-two Copper-plates, In Which the Doctrine of Solids, Delivered in the XIth, XIIth, and XVth Books of Euclid, is Illustrated by New-invented Schemes Cut Out of Paste-Board. Watkins. 
  • Poinsot, Louis (1810) (in fr). Mémoire sur les polygones et sur les polyèdres. 
  • Marie, François-Charles-Michel (1835) (in fr). Géométrie stéréographique, ou reliefs des polyèdres. Paris. 
  • Schläfli, Ludwig (1901). Graf, J. H.. ed (in de). Theorie der vielfachen Kontinuität. Republished by Cornell University Library historical math monographs 2010. Zürich, Basel: Georg & Co.. ISBN 978-1-4297-0481-6. https://books.google.com/books?id=foIUAQAAMAAJ. 
  • Wiener, Christian (1864). Über Vielecke und Vielflache. Teubner. https://archive.org/details/bervieleckeundv01wiengoog. 
  • Catalan, Eugène (1865). "Mémoire sur la théorie des polyèdres" (in fr). Journal de l'École Polytechnique 24. 
  • Klein, Felix (1884) (in de). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom 5ten Grade. 
  • Fedorov, E. S. (1885) (in ru). Начала учения о фигурах. [54]
  • Gorham, John (1888). A System for the Construction of Crystal Models on the Type of an Ordinary Plait: Exemplified by the Forms Belonging to the Six Axial Systems in Crystallography. https://archive.org/details/asystemforconst00gorhgoog.  Reprint, Tarquin, 2007, ISBN 978-1-899618-68-2.
  • Eberhard, Victor (1891). Zur Morphologie der Polyeder. Teubner. https://archive.org/details/zurmorphologied01ebergoog. [55]
  • von Lindemann, Ferdinand (1897) (in de). Zur Geschichte der Polyeder und der Zahlzeichen. Munich: F. Straub. https://books.google.com/books?id=xKGsp8WMu28C.  Reprinted from Sitz. Bay. Akad. Wiss. 1896, pp. 625–758.
  • Brückner, Max (1900) (in de). Vielecke und Vielflache: Theorie und Geschichte. Treubner. https://archive.org/details/vieleckeundviel00brgoog.  Über die gleicheckig-gleichflächigen diskontinuierlichen und nichtkonvexen Polyeder, 1906.
  • Steinitz, Ernst (1934). Rademacher, Hans. ed (in de). Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie. 

Books about historical topics

  • Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press. [56]
  • Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo. [57]
  • Dézarnaud-Dandine, Christine; Sevin, Alain (2009) (in fr). Histoire des polyèdres: Quand la nature est géomètre. Vuibert. 
  • Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. 4. Springer. [58]
  • Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press. [59]
  • Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London. 
  • Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press. [60]

References

  1. Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School 16 (2): 47. 
  2. "Science News Books". Science News 144 (21): 335–350. November 20, 1993.  Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
  3. Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
    • Plummer, Robert (December 1996). "none". The Mathematics Teacher 89 (9): 782. 
    • Barnette, David (1997). "none". Mathematical Reviews. 
    • Cannon, Mary Ellen (May 1997). "none". Mathematics Teaching in the Middle School 2 (6): 444–445. 
    • Blackwell, Joan (March 1999). "Review". School Science and Mathematics (Wiley) 99 (3): 160. doi:10.1111/j.1949-8594.1999.tb17467.x. ProQuest 195202376. https://www.proquest.com/docview/195202376. 
  4. Reviews of Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality:
    • Murphey, Bonnie (January 2004). "none". Mathematics Teaching in the Middle School 9 (5): 288. 
    • Kessler, Charlotte (January 2004). "none". The Mathematics Teacher 97 (1): 78. 
  5. Reviews of Modular Origami Polyhedra (2nd ed.):
    • Böhm, Johannes. "none". zbMATH. 
    • Johnston, Christopher (September 2002). "none". Mathematics Teaching in the Middle School 8 (1): 59, 62. 
  6. Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School 27 (1): 47. 
  7. Reviews of Origami Polyhedra Design:
    • Hagedorn, Thomas R. (April 2010). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/origami-polyhedra-design. 
    • Luck, Gary S. (March 2011). "none". The Mathematics Teacher 104 (7): 558. 
    • Thomas, Rachel (December 2009). "Review". Plus Magazine. https://plus.maths.org/content/origami-polyhedra-design. 
  8. Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School 8 (7): 380, 382. 
  9. Reviews of Mathematical Models:
    • Goldberg, M.. "Review of 1st ed.". Mathematical Reviews. 
    • Müller, H. R.. "Review of 1st ed." (in German). zbMATH.  2nd ed., Zbl 0095.38001.
    • ter Haar, D. (March 1953). "Briefly reviewed (review of 1st ed.)". The Scientific Monthly 76 (3): 188–189. 
    • Stone, Abraham (April 1953). "Review of 1st ed.". Scientific American 188 (4): 110. 
    • Dorrington, B. J. F. (September 1953). "Review of 1st ed.". The Mathematical Gazette 37 (321): 223. doi:10.2307/3608314. 
    • Ogilvy, C. Stanley (November 1959). "Review of 1st ed.". The Mathematics Teacher 52 (7): 577–578. 
    • Coxeter, H. S. M. (December 1962). "Review of 2nd ed.". The Mathematical Gazette 46 (358): 331. doi:10.2307/3611791. 
  10. Reviews of Build Your Own Polyhedra:
    • Schmidt, Don (February 1989). "none". The Mathematics Teacher 82 (2): 145. 
    • Leiva, Miriam A. (April 1989). "none". The Arithmetic Teacher 36 (8): 58–59. 
    • Jacob, Wiliam (October 1994). "none". The Mathematics Teacher 87 (7): 572. 
    • Provost, Mary D. (September–October 1995). "none". Mathematics Teaching in the Middle School 1 (6): 497–498. 
  11. Reviews of Polyhedron Models:
    • Peak, Philip (May 1972). "Review of 1st ed.". The Mathematics Teacher 65 (5): 446. 
    • Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655. 
    • Quadling, D. A. (October 1972). "Review of 1st ed.". The Mathematical Gazette 56 (397): 256. doi:10.2307/3617024. 
    • Loeb, Arthur L. (Winter 1974). "Review of 1st ed.". Leonardo 7 (1): 82–83. doi:10.2307/1572763. 
    • Ando, Masue (October 1976). "Review of 2nd ed.". The Arithmetic Teacher 23 (6): 449. 
    • Bristol, James D. (December 1976). "Review of 2nd ed.". The Mathematics Teacher 69 (8): 698. 
  12. Reviews of Spherical Models:
    • Coxeter, H. S. M. (May–June 1980). "none". American Scientist 68 (3): 342. 
    • Ede, J. D. (March 1981). "none". The Mathematical Gazette 65 (431): 65. doi:10.2307/3617955. 
    • Brisson, David W. (Winter 1982). "none". Leonardo 15 (1): 83. doi:10.2307/1574381. 
  13. Reviews of Dual Models:
    • Ede, J. D. (December 1984). "none". The Mathematical Gazette 68 (446): 307. doi:10.2307/3616168. 
    • Senechal, Marjorie (March–April 1985). "none". American Scientist 73 (2): 205. 
  14. Reviews of Treks into Intuitive Geometry:
    • Jacquemet, Matthieu. "none". zbMATH. 
    • Brown, Tricia Muldoon (April 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/treks-into-intuitive-geometry. 
    • Fox, Michael (October 2017). "none". The Mathematical Gazette 101 (552): 565–568. doi:10.1017/mag.2017.164. 
  15. Callahan, Deborah D. (September 2002). "Review of Polyhedra Pastimes". Mathematics Teaching in the Middle School 8 (1): 64. 
  16. Reviews of Polyhedra:
    • Bending, Thomas (March 1999). "none". The Mathematical Gazette 83 (496): 178–179. doi:10.2307/3618744. 
    • Böhm, J.. "none". zbMATH. 
    • Casselman, Bill (September 1998). "Review". Notices of the American Mathematical Society 45 (8): 978–980. https://www.ams.org/notices/199808/review-casselman.pdf. 
    • Grabiner, Judith V. (December 1998). "none". Isis 89 (4): 714–715. doi:10.1086/384173. 
    • McMullen, Peter (1998). "none". Mathematical Reviews. 
    • Sandifer, Ed (February 1999). "Review". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/polyhedra. 
  17. Hayek, Linda M. (April 1994). "Review of The Platonic Solids Activity Book". The Mathematics Teacher 87 (4): 298. 
  18. Reviews of Shapes, Space and Symmetry:
    • Morrison, Philip (March 1972). "none". Scientific American 226 (3): 124–125. 
    • Peak, Philip (May 1972). "none". The Mathematics Teacher 65 (5): 447. 
    • Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655. 
    • Hersee, John (December 1972). "none". The Mathematical Gazette 56 (398): 338–339. doi:10.2307/3617853. 
    • Moser, William (Winter 1973). "none". Leonardo 6 (1): 79. doi:10.2307/1572445. 
    • Ayoub, Ayoub B. (September 1992). "none". The Mathematics Teacher 85 (6): 494. 
    • Becker, Glenn (January 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/shapes-space-and-symmetry. 
  19. Reviews of Les polyèdres:
    • Pogoda, Zdzisław. "none". Mathematical Reviews. 
    • Moreau, Jean (April 2010). "Review" (in French). La Jaune et La Rouge 654. https://www.lajauneetlarouge.com/les-polyedres-ou-la-beaute-des-mathematiques/. 
  20. Grünbaum, Branko (January–February 1988). "Review of An Adventure in Multidimensional Space". American Scientist 76 (1): 94–95. 
  21. Reviews of Polyhedra Primer:
    • McMullen, P.. "none". zbMATH. 
    • Gehringer, Joseph H. (May 1979). "none". The Mathematics Teacher 72 (5): 392. 
    • Pedersen, Jean J. (August–September 1980). "none". American Mathematical Monthly 87 (7): 586–589. doi:10.2307/2321449. 
    • "none". Leonardo 14 (1): 78. Winter 1981. doi:10.2307/1574520. 
    • Thakare, N. K. (July–December 2015). "Review". The Mathematics Student 84 (3–4): 177. http://www.indianmathsociety.org.in/mathstudent-part-2-2015.pdf. 
    • Schulte, Tom (January 2016). "Review". MAA Reviews. https://www.maa.org/press/maa-reviews/polyhedra-primer. 
  22. Coxeter, H. S. M.. "Review of Polyhedra: A Visual Approach". Mathematical Reviews. 
  23. Ashbacher, Charles (November 2008). "Review of The Platonic Solids Book". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/the-platonic-solids-book. 
  24. Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher 96 (2): 154. doi:10.5951/MT.96.2.0154.  Review of three books including Platonic & Archimedean Solids.
  25. Reviews of Convex Polyhedra:
    • Busemann, H.. "Review of Russian ed.". Mathematical Reviews. 
    • Kaloujnine, L.. "Review of Russian ed." (in German). zbMATH. 
    • Connelly, Robert (March 2006). "Review of translation". SIAM Review 48 (1): 157–160. doi:10.1137/SIREAD000048000001000149000001. http://pi.math.cornell.edu/~connelly/alexandrov.pdf. 
    • Gorkaviy, Vasyl. "Review of translation". zbMATH. 
    • Ruane, P. N. (November 2006). "Review of translation". The Mathematical Gazette 90 (519): 557–558. doi:10.1017/S002555720018074X. 
  26. Reviews of Computing the Continuous Discretely:
    • Bayer, Margaret M.. "Review of 1st ed.". zbMATH. 
    • De Loera, Jesús A. (2007). "Review of 1st ed.". Mathematical Reviews. 
    • Glass, Darren (February 2007). "Review of 1st ed.". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/computing-the-continuous-discretely-integer-point-enumeration-in-polyhedra. 
    • Karpenkov, Oleg. "Review of 2nd ed.". zbMATH. 
  27. Reviews of An Introduction to Convex Polytopes:
    • Weinstein, J.. "none". zbMATH. 
    • Barnette, D. (1984). "none". Mathematical Reviews. 
    • Anderson, Ian (June 1984). "none". The Mathematical Gazette 68 (444): 146–147. doi:10.2307/3615937. 
    • Sallee, G. T. (March 1985). "none". SIAM Review 27 (1): 123–124. doi:10.1137/1027044. 
    • Lee, Carl W. (November 1986). "none". The American Mathematical Monthly 93 (9): 750–752. doi:10.2307/2322309. 
  28. Reviews of Regular Polytopes:
    • Goldberg, M.. "Review of 1st ed.". Mathematical Reviews. 
    • Fejes Tóth, L.. "Review of 1st ed.". zbMATH. 
    • Cundy, H. Martyn (February 1949). "Review of 1st ed.". The Mathematical Gazette 33 (303): 47–49. doi:10.2307/3608432. 
    • Allendoerfer, C. B. (July 1949). "Review of 1st ed.". Bulletin of the American Mathematical Society 55 (7): 721–723. doi:10.1090/s0002-9904-1949-09258-3. https://projecteuclid.org/euclid.bams/1183513951. 
    • Miller, J. C. P. (July 1949). "Review of 1st ed.". Science Progress 37 (147): 563–564. 
    • Walsh, J. L. (August 1949). "Review of 1st ed.". Scientific American 181 (2): 58–59. 
    • Frueh, A. J. Jr. (November 1950). "Review of 1st ed.". The Journal of Geology 58 (6): 672. doi:10.1086/625793. 
    • Wolfe, H. E. (February 1951). "Review of 1st ed.". American Mathematical Monthly 58 (2): 119–120. doi:10.2307/2308393. 
    • Robinson, G. de B.. "Review of 2nd ed.". Mathematical Reviews. 
    • Goldberg, Michael (January 1964). "Review of 2nd ed.". Mathematics of Computation 18 (85): 166. doi:10.2307/2003446. 
    • Yff, P. (February 1965). "Review of 2nd ed.". Canadian Mathematical Bulletin 8 (1): 124. doi:10.1017/s0008439500024413. 
    • Peak, Philip (March 1975). "Review of 3rd ed.". The Mathematics Teacher 68 (3): 230. 
    • Wenninger, Magnus J. (Winter 1976). "Review of 3rd ed.". Leonardo 9 (1): 83. doi:10.2307/1573335. 
    • Brown, Tricia Muldoon (October 2016). "Review of 3rd ed.". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/regular-polytopes. 
  29. Reviews of Regular Figures:
    • Sherk, F. A.. "none". Mathematical Reviews. 
    • Florian, A.. "none". zbMATH. 
    • Coxeter, H. S. M. (December 4, 1964). "Geometry". Science. New Series 146 (3649): 1288. doi:10.1126/science.146.3649.1288. 
    • Todd, J. A. (December 1964). "none". Proceedings of the Edinburgh Mathematical Society 14 (2): 174–175. doi:10.1017/s0013091500026055. 
    • Rogers, C. A. (1965). "none". Journal of the London Mathematical Society s1-40 (1): 378. doi:10.1112/jlms/s1-40.1.378a. 
    • Goldberg, Michael (April 1965). "none". Mathematics of Computation 19 (89): 166. doi:10.2307/2004137. 
    • Edge, W. L. (October 1965). "none". The Mathematical Gazette 49 (369): 343–345. doi:10.2307/3612913. 
    • Du Val, Patrick (August–September 1966). "none". American Mathematical Monthly 73 (7): 799. doi:10.2307/2314022. 
  30. Reviews of Convex Polytopes:
    • Sallee, G. T.. "Review of 1st ed.". MathSciNet. 
    • Jucovič, E.. "Review of 1st ed." (in German). zbMATH. 
    • Fenchel, Werner (Winter 1968). "Review of 1st ed.". American Scientist 56 (4): 476A–477A. 
    • Baxandall, P. R. (October 1969). "Review of 1st ed.". The Mathematical Gazette 53 (385): 342–343. doi:10.2307/3615008. 
    • Ehrig, G.. "Review of 2nd ed." (in German). zbMATH. 
    • Zvonkin, Alexander (2004). "Review of 2nd ed.". MathSciNet. 
    • Lord, Nick (March 2005). "Review of 2nd ed.". The Mathematical Gazette 89 (514): 164–166. doi:10.1017/S0025557200177307. 
    • McMullen, Peter (July 2005). "Review of 2nd ed.". Combinatorics, Probability and Computing 14 (4): 623–626. doi:10.1017/s0963548305226998. 
  31. Reviews of Convex Figures and Polyhedra:
    • Burau, W.. "Review of Russian edition" (in de). zbMATH. 
    • Kazarinoff, N. D.. "Review of Smith translation". MathSciNet. 
    • Eves, Howard (March 1965). "Review of Smith translation". Mathematics Magazine 38 (2): 113. doi:10.2307/2688443. 
  32. Jucovič, E.. "Review of Reguläre und halbreguläre Polyeder" (in de). MathSciNet. 
  33. Reviews of Lectures in Geometric Combinatorics:
    • Bóna, Miklós (April 2007). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/lectures-in-geometric-combinatorics. 
    • Gorkaviy, Vasyl. "Review of Lectures in Geometric Combinatorics". zbMATH. 
    • mloe (June 2011). "Review of Lectures in Geometric Combinatorics". EMS Reviews. European Mathematical Society. https://euro-math-soc.eu/review/lectures-geometric-combinatorics. 
    • Zvonkin, Alexander (2007). "Review of Lectures in Geometric Combinatorics". Mathematical Reviews. 
  34. Reviews of Lectures on Polytopes:
    • Böhm, J.. "none". zbMATH. 
    • Bayer, Margaret M. (1996). "none". MathSciNet. 
    • McMullen, P. (February 1996). "none". Proceedings of the Edinburgh Mathematical Society 39 (1): 189–190. doi:10.1017/s0013091500022914. 
  35. Reviews of The Fifty-Nine Icosahedra:
    • Bottema, O.. "none". zbMATH. 
    • Miller, J. C. P. (February 1939). "none". The Mathematical Gazette 23 (253): 105–107. doi:10.2307/3605992. 
    • Cundy, H. Martyn (July 2002). "none". The Mathematical Gazette 86 (506): 360–361. doi:10.2307/3621904. 
  36. Reviews of Regular Complex Polytopes:
    • Jucovič, E.. "Review of 1st ed.". zbMATH. 
    • Guggenheimer, H. W.. "Review of 1st ed.". MathSciNet. 
    • Schwarzenberger, R. L. E. (October 1975). "Review of 1st ed.". The Mathematical Gazette 59 (409): 196–197. doi:10.2307/3617711. 
    • Grünbaum, Branko (March 1977). "Review of 1st ed.". Bulletin of the London Mathematical Society 9 (1): 119–120. doi:10.1112/blms/9.1.119b. 
    • Böhm, J.. "Review of 2nd ed.". zbMATH. 
    • McMullen, P. (1992). "Review of 2nd ed.". MathSciNet. 
    • Cannon, Lawrence O. (April 1992). "Review of 2nd ed.". The Mathematics Teacher 85 (4): 316. 
  37. Reviews of Geometric Folding Algorithms:
    • Carbno, Collin (May 2009). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/geometric-folding-algorithms-linkages-origami-polyhedra. 
    • Paquete, Luís (November 2009). "none". European Journal of Operational Research 199 (1): 311–313. doi:10.1016/j.ejor.2008.06.009. 
    • mbec (2011). "Review". EMS Reviews. European Mathematical Society. https://euro-math-soc.eu/review/geometric-folding-algorithms-linkages-origami-polyhedra. 
    • Fasy, Brittany Terese; Millman, David L. (March 2011). "none". ACM SIGACT News 42 (1): 43–46. doi:10.1145/1959045.1959056. 
  38. Reviews of Scale-Isometric Polytopal Graphs:
    • Dawson, Robert. "none". zbMATH. 
    • Ding, Ren (2005). "none". MathSciNet. 
  39. Reviews of Proofs and Refutations:
    • Berg, Michael (June 2012). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/proofs-and-refutations-the-logic-of-mathematical-discovery. 
    • De Keyser, F. (December 1977). "none". Tijdschrift voor Filosofie 39 (4): 715. 
    • Ernest, Paul. "none". MathSciNet. 
    • Gasarch, William (December 2001). "none". ACM SIGACT News 32 (4): 6–8. doi:10.1145/568425.568428. 
    • Hart, W. D. (April 1978). "none". Mind. New Series 87 (346): 314–316. doi:10.1093/mind/LXXXVII.2.314. 
    • Isaacson, Daniel (April 1978). "none". The Philosophical Quarterly 28 (111): 169–171. doi:10.2307/2219364. 
    • Kitcher, Philip (May 13, 1977). "On the uses of rigorous proof". Science. New Series 196 (4291): 782–783. doi:10.1126/science.196.4291.782. PMID 17776902. 
    • Kneebone, G. T.. "none". zbMATH. 
    • Lenoir, Timothy (February 1981). "none". Historia Mathematica 8 (1): 99–104. doi:10.1016/0315-0860(81)90016-1. 
    • Lercher, Bruce (1978). "none". International Studies in Philosophy 10: 192–193. doi:10.5840/intstudphil19781029. 
    • Levin, Margarita R. (September 1980). "none". Noûs 14 (3): 474–478. doi:10.2307/2214971. 
    • McFetridge, I. G. (July 1977). "none". Philosophy 52 (201): 365–366. doi:10.1017/S003181910002725X. 
    • Peak, Philip (May 1977). "none". The Mathematics Teacher 70 (5): 474–475. 
    • Quadling, D. A. (June 1977). "none". The Mathematical Gazette 61 (416): 145–146. doi:10.2307/3616424. 
    • Quine, W. V. (March 1977). "none". The British Journal for the Philosophy of Science 28 (1): 81–82. doi:10.1093/bjps/28.1.81. 
    • Russo, F. (April–June 1978). "none". Archives de Philosophie 41 (2): 304–305. 
    • Satzer, William J. (April 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/proofs-and-refutations-the-logic-of-mathematical-discovery-0. 
    • Schramm, Alfred (1980). "Vom Vermächtnis des Imre Lakatos". Philosophische Rundschau 27 (1–2): 84–100. 
    • Toulmin, Stephen (Winter 1980). "The intellectual authority and the social context of the scientific enterprise: Holton, Rescher And Lakatos". Minerva 18 (4): 652–667. 
  40. Review of Geometric Regular Polytopes:
    • Sahoo, Uma Kant. "none". zbMATH. 
  41. Reviews of Abstract Regular Polytopes:
    • Hartley, Michael Ian. "none". zbMATH. 
    • Martini, Horst (August 2003). "none". Bulletin of the London Mathematical Society 35 (5): 711–712. doi:10.1112/s0024609303219330. 
    • Živaljević, Rade (2004). "none". MathSciNet. 
  42. Reviews of Convex Polytopes and the Upper Bound Conjecture:
    • Coxeter, H. S. M.. "none". Mathematical Reviews. 
    • Schneider, R.. "none". zbMATH. 
  43. Hertel, E.. "Review of Beiträge zur Theorie der Polyeder" (in de). MathSciNet. 
  44. Reviews of Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem:
    • do Rosário Pinto, Maria. "none". zbMATH. 
    • Hertel, E. (2003). "none". Mathematical Reviews. 
  45. Reviews of Realization Spaces of Polytopes:
    • McMullen, P.. "none". zbMATH. 
    • Bayer, Margaret M. (1999). "none". Mathematical Reviews. 
  46. Reviews of Adventures Among the Toroids:
    • Coxeter, H. S. M.. "Review of 1st ed.". Mathematical Reviews. 
    • Coxeter, H. S. M. (1982). "Review of 2nd ed.". Mathematical Reviews. 
    • Crapo, Henry (1980). "Review of 2nd ed.". Structural Topology 5: 45–48. http://www-iri.upc.es/people/ros/StructuralTopology/ST5/st5-09-a5-ocr.pdf. 
    • "Review of 1st ed." (in German). zbMATH. 
    • "Review of 2nd ed.". zbMATH. 
  47. Wenninger, Magnus J. (Spring 1976). "Review of Infinite Polyhedra". Leonardo 9 (2): 158. doi:10.2307/1573140. 
  48. Reviews of A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space:
    • Larmore, L.. "none". Mathematical Reviews. 
    • Freudenthal, Hans. "none". zbMATH. 
  49. Review of Convex Polyhedra with Regular Faces:
    • Pogorelov, A. V.. "Review of Russian ed.". Mathematical Reviews. 
  50. Chilton, J. C. (April 2000). "Review of Beyond the Cube". Journal of the International Association for Shell and Spatial Structures 41 (1): 132. 
  51. Reviews of Shaping Space:
    • Lichtenberg, Donovan R. (December 1988). "Review of 1st ed.". The Mathematics Teacher 81 (9): 757. 
    • Crowe, Donald W. (January–February 1989). "Review of 1st ed.". American Scientist 77 (1): 72. 
    • Karaali, Gizem (December 2013). "Review of 2nd ed.". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/shaping-space-exploring-polyhedra-in-nature-art-and-the-geometrical-imagination. 
  52. Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science 41 (6): 513–566. doi:10.1080/00033798400200401. 
  53. Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN 978-3-319-72486-7. 
  54. Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov" (in en,fr). Structural Topology (10): 5–22. 
  55. Schönflies, A. M.. "Review of Zur Morphologie der Polyeder" (in German). Jahrbuch über die Fortschritte der Mathematik. 
  56. Reviews of The Polyhedrists:
    • Bultheel, Adhemar (September 2022). "Review". EMS Magazine (125): 48–49. doi:10.4171/mag/93. https://lirias.kuleuven.be/retrieve/676716. 
    • Karakas, Alexandra (2022). "A new account of the relation between art, science, and design". Disegno 6 (1): 126–130. doi:10.21096/disegno_2022_1ak. 
    • Livingstone, Jo (April 2022). "The Polyhedrists: Linear perspective, schmlinear perspective: here are the real shapes that changed how we see". 4Columns. https://4columns.org/livingstone-jo/the-polyhedrists. 
    • Sarkar, Amites (October 2022). "none". Math Horizons 30 (2): 28. doi:10.1080/10724117.2022.2113253. 
    • Sonar, Thomas. "none". zbMATH. 
  57. Reviews of Piero della Francesca's Mathematical Treatises:
    • Tormey, Judith Farr (Spring 1979). "none". The Journal of Aesthetics and Art Criticism 37 (3): 389–390. doi:10.2307/430812. 
    • Rose, Paul Lawrence (1980). "none". Bibliothèque d'Humanisme et Renaissance 42 (2): 487–488. 
    • Maccagni, Carlo (1979). "none". Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III) 9 (4): 1909–1911. 
  58. Reviews of Descartes on Polyhedra:
    • Coxeter, H. S. M. (1984). "none". Mathematical Reviews. 
    • Führer, L.. "none" (in German). zbMATH. 
    • Kleinschmidt, Peter (May 1984). "Review". Optima (Mathematical Programming Society) 12: 4–5. https://www.mathopt.org/Old-Optima-Issues/optima12.pdf. 
    • Senechal, Marjorie L. (August 1984). "none". Historia Mathematica 11 (3): 333–334. doi:10.1016/0315-0860(84)90044-2. 
    • Sherk, F. A. (January 1984). "none". Annals of Science 41 (1): 95–96. doi:10.1080/00033798400200131. 
  59. Reviews of Euler's Gem:
    • Bradley, Robert (January 8, 2009). Review. https://www.timeshighereducation.com/books/eulers-gem-the-polyhedron-formula-and-the-birth-of-topology/404921.article. 
    • Bultheel, Adhemar (January 2020). "Review". EMS Reviews (European Mathematical Society). https://euro-math-soc.eu/review/eulers-gem-0. 
    • Ciesielski, Krzysztof. "none". Mathematical Reviews. 
    • Daems, Jeanine (December 2009). "none". The Mathematical Intelligencer 32 (3): 56–57. doi:10.1007/s00283-009-9116-0. 
    • Jones, Dustin L. (August 2009). "none". The Mathematics Teacher (National Council of Teachers of Mathematics) 103 (1): 87. 
    • Karpenkov, Oleg. "none". zbMATH. 
    • Martin, Jeremy (December 2010). "Review". Notices of the American Mathematical Society 57 (11): 1448–1450. https://www.ams.org/notices/201011/rtx101101448p.pdf. 
    • Roth, Bruce (March 2010). "none". The Mathematical Gazette 94 (529): 176–177. doi:10.1017/S0025557200007397. 
    • Satzer, William J. (October 2008). "Review". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/eulers-gem-the-polyhedron-formula-and-the-birth-of-topology. 
    • Wagner, Clifford (February 2010). "none". Convergence (Mathematical Association of America). doi:10.4169/loci003291. 
  60. Prudence, Paul. "David Wade's 'Fantastic Geometry' – The Works of Wenzel Jamnitzer & Lorenz Stoer". Dataisnature. https://www.dataisnature.com/?p=2048. 



Retrieved from "https://handwiki.org/wiki/index.php?title=List_of_books_about_polyhedra&oldid=3376511"

Categories: [Polyhedra] [Mathematics books]


Download as ZWI file | Last modified: 08/10/2024 11:49:41 | 21 views
☰ Source: https://handwiki.org/wiki/List_of_books_about_polyhedra | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]