Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN 1-899618-23-6.Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.[1]
Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN 1-899618-35-X.More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover.Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover.
Origami
Fuse, Tomoko (1990). Unit Origami: Multidimensional Transformations. Japan Publications. ISBN 978-0-87040-852-6.[2]
Gurkewitz, Rona; Arnstein, Bennett (1996). 3D Geometric Origami: Modular Origami Polyhedra. Dover. ISBN 9780486135601.[3]Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality, 2002.[4]Beginner's Book of Modular Origami Polyhedra: The Platonic Solids, 2008. Modular Origami Polyhedra, also with Lewis Simon, 2nd ed., 1999.[5]
Mitchell, David (1997). Mathematical Origami: Geometrical Shapes by Paper Folding. Tarquin. ISBN 978-1-899618-18-7.[6]
Montroll, John (2009). Origami Polyhedra Design. A K Peters. ISBN 9781439871065.[7]A Plethora of Polyhedra in Origami, Dover, 2002.[8]
Other model-making
Cundy, H. M.; Rollett, A. P. (1952). Mathematical Models. Clarendon Press. 2nd ed., 1961. 3rd ed., Tarquin, 1981, ISBN 978-0-906212-20-2.[9]
Hilton, Peter; Pedersen, Jean (1988). Build Your Own Polyhedra. Addison-Wesley.[10]
Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press. 2nd ed., Polyhedron Models for the Classroom, 1974.[11]Spherical Models, 1979.[12]Dual Models, 1983.[13]
Mathematical studies
Introductory level and general audience
Akiyama, Jin; Matsunaga, Kiyoko (2015). Treks into Intuitive Geometry: The World of Polygons and Polyhedra. Springer.[14]
Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. 23. National Geographic. ISBN 978-84-473-8929-2.
Britton, Jill (2001). Polyhedra Pastimes. Dale Seymour Publishing. ISBN 0-7690-2782-2.[15]
Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.[16]
Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press.[17]
Holden, Alan (1971). Shapes, Space and Symmetry. Dover, 1991.[18]
le Masne, Roger (2013) (in French). Les polyèdres, ou la beauté des mathématiques (4th ed.). Self-published.[19]
Miyazaki, Koji (1983) (in ja). Katachi to kūkan: Tajigen sekai no kiseki. Wiley. Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN 978-0-442-26496-3.[21]
Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press.[22]
Radin, Dan (2008). The Platonic Solids Book. Self-published.[23]
Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN 978-0802713865.[24]
Textbooks
Alexandrov, A. D. (2005). Convex Polyhedra. Springer. Translated from 1950 Russian edition.[25]
Beck, Matthias; Robins, Sinai (2007). Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. 154. Springer. 2nd ed., 2015, ISBN 978-1-4939-2968-9.[26]
Brøndsted, Arne (1983). An Introduction to Convex Polytopes. Graduate Texts in Mathematics. 90. Springer.[27]
Coxeter, H. S. M. (1948). Regular Polytopes. Methuen. 2nd ed., Macmillan, 1963. 3rd ed., Dover, 1973.[28]
Fejes Tóth, László (1964). Regular Figures. Pergamon.[29]
Grünbaum, Branko (1967). Convex Polytopes. Wiley. 2nd ed., Springer, 2003.[30]
Lyusternik, Lazar (1956) (in ru). Выпуклые фигуры и многогранники. Gosudarstv. Izdat. Tehn.-Teor. Lit.. Translated into English as Convex Figures and Polyhedra by T. Jefferson Smith, Dover, 1963 and by Donald L. Barnett, Heath, 1966.[31]
Roman, Tiberiu (1968) (in de). Reguläre und halbreguläre Polyeder. VEB Deutscher Verlag der Wissenschaften.[32]
Thomas, Rekha (2006). Lectures in Geometric Combinatorics. American Mathematical Society.[33]
Ziegler, Günter M. (1993). Lectures on Polytopes. Springer.[34]
Monographs and special topics
Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. 6. University of Toronto Press. 2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.[35]
Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press. 2nd ed., 1991.[36]
Demaine, Erik; O'Rourke, Joseph (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press.[37]
Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail (2004). Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and [math]\displaystyle{ \mathbb{Z}_n }[/math]. London: Imperial College Press. doi:10.1142/9781860945489. ISBN 1-86094-421-3.[38]
Lakatos, Imre (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press.[39]
McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. 172. Cambridge University Press.[40]
McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. 92. Cambridge University Press.[41]
McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. 3. Cambridge University Press.[42]
Nef, Walter (1978) (in de). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik. Herbert Lang.[43]
Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. 21. Hindustan Book Agency.[44]
Richter-Gebert, Jürgen (1996). Realization Spaces of Polytopes. Lecture Notes in Mathematics. 1643. Springer.[45]
Stewart, B. M. (1970). Adventures Among the Toroids. Self-published. 2nd ed., 1980.[46]
Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press.[48]
Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. Translated and corrected from Zalgaller, V. A. (1967) (in ru). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI). 2. Nauka. http://mi.mathnet.ru/znsl1408.[49]
Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN 9781799883760.
Edited volumes
Avis, David; Bremner, David; Deza, Antoine, eds (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. 48. American Mathematical Society.
Gabriel, Jean-François, ed (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley.[50]
Kalai, Gil; Ziegler, Günter M., eds (2012). Polytopes - Combinatorics and Computation. DMV Seminar. 29. Springer.
Senechal, Marjorie; Fleck, G., eds (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN 0-8176-3351-0. 2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]
History
Early works
Listed in chronological order, and including some works shorter than book length:
Plato (in el). Timaeus.
Euclid (in el). Elements.
Pappus of Alexandria (1589). Mathematicae collectiones, liber quintus. apud Franciscum de Franciscis Senensem. https://archive.org/details/bub_gb_YTKUNyiY8sEC/page/n153/mode/2up.
Della Francesca, Piero (1482–1492) (in la). De quinque corporibus regularibus.
Pacioli, Luca (1509) (in it). Divina proportione.
de Bovelles, Charles (1511). De mathematicis corporibus.[52]
Dürer, Albrecht (1525) (in de). Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen und gantzen corporen, Viertes Buch. https://de.wikisource.org/wiki/Underweysung_der_Messung,_mit_dem_Zirckel_und_Richtscheyt,_in_Linien,_Ebenen_unnd_gantzen_corporen/Viertes_Buch.
Maurolico, Francesco (1537). Compaginationes solidorum regularium.[53]
Kepler, Johannes (1619) (in la). Harmonices Mundi. Translated into English as Harmonies of the World by C. G. Wallis (1939).
Descartes, René (c. 1630) (in la). De solidorum elementis. Original manuscript lost; copy by Gottfried Wilhelm Leibniz reprinted and translated in Descartes on Polyhedra, Springer, 1982.
Cowley, John Lodge (1758). An Appendix to Euclid's Elements in Seven Books, Containing Forty-two Copper-plates, In Which the Doctrine of Solids, Delivered in the XIth, XIIth, and XVth Books of Euclid, is Illustrated by New-invented Schemes Cut Out of Paste-Board. Watkins.
Poinsot, Louis (1810) (in fr). Mémoire sur les polygones et sur les polyèdres.
Marie, François-Charles-Michel (1835) (in fr). Géométrie stéréographique, ou reliefs des polyèdres. Paris.
Schläfli, Ludwig (1901). Graf, J. H.. ed (in de). Theorie der vielfachen Kontinuität. Republished by Cornell University Library historical math monographs 2010. Zürich, Basel: Georg & Co.. ISBN 978-1-4297-0481-6. https://books.google.com/books?id=foIUAQAAMAAJ.
Wiener, Christian (1864). Über Vielecke und Vielflache. Teubner. https://archive.org/details/bervieleckeundv01wiengoog.
Catalan, Eugène (1865). "Mémoire sur la théorie des polyèdres" (in fr). Journal de l'École Polytechnique24.
Klein, Felix (1884) (in de). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom 5ten Grade.
Fedorov, E. S. (1885) (in ru). Начала учения о фигурах.[54]
Gorham, John (1888). A System for the Construction of Crystal Models on the Type of an Ordinary Plait: Exemplified by the Forms Belonging to the Six Axial Systems in Crystallography. https://archive.org/details/asystemforconst00gorhgoog. Reprint, Tarquin, 2007, ISBN 978-1-899618-68-2.
Eberhard, Victor (1891). Zur Morphologie der Polyeder. Teubner. https://archive.org/details/zurmorphologied01ebergoog.[55]
von Lindemann, Ferdinand (1897) (in de). Zur Geschichte der Polyeder und der Zahlzeichen. Munich: F. Straub. https://books.google.com/books?id=xKGsp8WMu28C. Reprinted from Sitz. Bay. Akad. Wiss. 1896, pp. 625–758.
Brückner, Max (1900) (in de). Vielecke und Vielflache: Theorie und Geschichte. Treubner. https://archive.org/details/vieleckeundviel00brgoog.Über die gleicheckig-gleichflächigen diskontinuierlichen und nichtkonvexen Polyeder, 1906.
Steinitz, Ernst (1934). Rademacher, Hans. ed (in de). Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie.
Books about historical topics
Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press.[56]
Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo.[57]
Dézarnaud-Dandine, Christine; Sevin, Alain (2009) (in fr). Histoire des polyèdres: Quand la nature est géomètre. Vuibert.
Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. 4. Springer.[58]
Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.[59]
Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London.
Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press.[60]
References
↑Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School16 (2): 47.
↑"Science News Books". Science News144 (21): 335–350. November 20, 1993. Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
↑Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
Plummer, Robert (December 1996). "none". The Mathematics Teacher89 (9): 782.
Barnette, David (1997). "none". Mathematical Reviews.
Cannon, Mary Ellen (May 1997). "none". Mathematics Teaching in the Middle School2 (6): 444–445.
Blackwell, Joan (March 1999). "Review". School Science and Mathematics (Wiley) 99 (3): 160. doi:10.1111/j.1949-8594.1999.tb17467.x. ProQuest 195202376. https://www.proquest.com/docview/195202376.
↑Reviews of Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality:
Murphey, Bonnie (January 2004). "none". Mathematics Teaching in the Middle School9 (5): 288.
Kessler, Charlotte (January 2004). "none". The Mathematics Teacher97 (1): 78.
↑Reviews of Modular Origami Polyhedra (2nd ed.):
Böhm, Johannes. "none". zbMATH.
Johnston, Christopher (September 2002). "none". Mathematics Teaching in the Middle School8 (1): 59, 62.
↑Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School27 (1): 47.
↑Reviews of Origami Polyhedra Design:
Hagedorn, Thomas R. (April 2010). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/origami-polyhedra-design.
Luck, Gary S. (March 2011). "none". The Mathematics Teacher104 (7): 558.
Thomas, Rachel (December 2009). "Review". Plus Magazine. https://plus.maths.org/content/origami-polyhedra-design.
↑Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School8 (7): 380, 382.
↑Reviews of Mathematical Models:
Goldberg, M.. "Review of 1st ed.". Mathematical Reviews.
Müller, H. R.. "Review of 1st ed." (in German). zbMATH. 2nd ed., Zbl 0095.38001.
ter Haar, D. (March 1953). "Briefly reviewed (review of 1st ed.)". The Scientific Monthly76 (3): 188–189.
Stone, Abraham (April 1953). "Review of 1st ed.". Scientific American188 (4): 110.
Dorrington, B. J. F. (September 1953). "Review of 1st ed.". The Mathematical Gazette37 (321): 223. doi:10.2307/3608314.
Ogilvy, C. Stanley (November 1959). "Review of 1st ed.". The Mathematics Teacher52 (7): 577–578.
Coxeter, H. S. M. (December 1962). "Review of 2nd ed.". The Mathematical Gazette46 (358): 331. doi:10.2307/3611791.
↑Reviews of Build Your Own Polyhedra:
Schmidt, Don (February 1989). "none". The Mathematics Teacher82 (2): 145.
Leiva, Miriam A. (April 1989). "none". The Arithmetic Teacher36 (8): 58–59.
Jacob, Wiliam (October 1994). "none". The Mathematics Teacher87 (7): 572.
Provost, Mary D. (September–October 1995). "none". Mathematics Teaching in the Middle School1 (6): 497–498.
↑Reviews of Polyhedron Models:
Peak, Philip (May 1972). "Review of 1st ed.". The Mathematics Teacher65 (5): 446.
Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655.
Quadling, D. A. (October 1972). "Review of 1st ed.". The Mathematical Gazette56 (397): 256. doi:10.2307/3617024.
Loeb, Arthur L. (Winter 1974). "Review of 1st ed.". Leonardo7 (1): 82–83. doi:10.2307/1572763.
Ando, Masue (October 1976). "Review of 2nd ed.". The Arithmetic Teacher23 (6): 449.
Bristol, James D. (December 1976). "Review of 2nd ed.". The Mathematics Teacher69 (8): 698.
↑Reviews of Spherical Models:
Coxeter, H. S. M. (May–June 1980). "none". American Scientist68 (3): 342.
Ede, J. D. (March 1981). "none". The Mathematical Gazette65 (431): 65. doi:10.2307/3617955.
Brisson, David W. (Winter 1982). "none". Leonardo15 (1): 83. doi:10.2307/1574381.
↑Reviews of Dual Models:
Ede, J. D. (December 1984). "none". The Mathematical Gazette68 (446): 307. doi:10.2307/3616168.
Senechal, Marjorie (March–April 1985). "none". American Scientist73 (2): 205.
↑Reviews of Treks into Intuitive Geometry:
Jacquemet, Matthieu. "none". zbMATH.
Brown, Tricia Muldoon (April 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/treks-into-intuitive-geometry.
Fox, Michael (October 2017). "none". The Mathematical Gazette101 (552): 565–568. doi:10.1017/mag.2017.164.
↑Callahan, Deborah D. (September 2002). "Review of Polyhedra Pastimes". Mathematics Teaching in the Middle School8 (1): 64.
↑Reviews of Polyhedra:
Bending, Thomas (March 1999). "none". The Mathematical Gazette83 (496): 178–179. doi:10.2307/3618744.
Böhm, J.. "none". zbMATH.
Casselman, Bill (September 1998). "Review". Notices of the American Mathematical Society45 (8): 978–980. https://www.ams.org/notices/199808/review-casselman.pdf.
Grabiner, Judith V. (December 1998). "none". Isis89 (4): 714–715. doi:10.1086/384173.
McMullen, Peter (1998). "none". Mathematical Reviews.
Sandifer, Ed (February 1999). "Review". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/polyhedra.
↑Hayek, Linda M. (April 1994). "Review of The Platonic Solids Activity Book". The Mathematics Teacher87 (4): 298.
↑Reviews of Shapes, Space and Symmetry:
Morrison, Philip (March 1972). "none". Scientific American226 (3): 124–125.
Peak, Philip (May 1972). "none". The Mathematics Teacher65 (5): 447.
Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655.
Hersee, John (December 1972). "none". The Mathematical Gazette56 (398): 338–339. doi:10.2307/3617853.
Moser, William (Winter 1973). "none". Leonardo6 (1): 79. doi:10.2307/1572445.
Ayoub, Ayoub B. (September 1992). "none". The Mathematics Teacher85 (6): 494.
Becker, Glenn (January 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/shapes-space-and-symmetry.
↑Reviews of Les polyèdres:
Pogoda, Zdzisław. "none". Mathematical Reviews.
Moreau, Jean (April 2010). "Review" (in French). La Jaune et La Rouge654. https://www.lajauneetlarouge.com/les-polyedres-ou-la-beaute-des-mathematiques/.
↑Grünbaum, Branko (January–February 1988). "Review of An Adventure in Multidimensional Space". American Scientist76 (1): 94–95.
↑Reviews of Polyhedra Primer:
McMullen, P.. "none". zbMATH.
Gehringer, Joseph H. (May 1979). "none". The Mathematics Teacher72 (5): 392.
Pedersen, Jean J. (August–September 1980). "none". American Mathematical Monthly87 (7): 586–589. doi:10.2307/2321449.
Thakare, N. K. (July–December 2015). "Review". The Mathematics Student84 (3–4): 177. http://www.indianmathsociety.org.in/mathstudent-part-2-2015.pdf.
Schulte, Tom (January 2016). "Review". MAA Reviews. https://www.maa.org/press/maa-reviews/polyhedra-primer.
↑Coxeter, H. S. M.. "Review of Polyhedra: A Visual Approach". Mathematical Reviews.
↑Ashbacher, Charles (November 2008). "Review of The Platonic Solids Book". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/the-platonic-solids-book.
↑Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher96 (2): 154. doi:10.5951/MT.96.2.0154. Review of three books including Platonic & Archimedean Solids.
↑Reviews of Convex Polyhedra:
Busemann, H.. "Review of Russian ed.". Mathematical Reviews.
Kaloujnine, L.. "Review of Russian ed." (in German). zbMATH.
Connelly, Robert (March 2006). "Review of translation". SIAM Review48 (1): 157–160. doi:10.1137/SIREAD000048000001000149000001. http://pi.math.cornell.edu/~connelly/alexandrov.pdf.
Gorkaviy, Vasyl. "Review of translation". zbMATH.
Ruane, P. N. (November 2006). "Review of translation". The Mathematical Gazette90 (519): 557–558. doi:10.1017/S002555720018074X.
↑Reviews of Computing the Continuous Discretely:
Bayer, Margaret M.. "Review of 1st ed.". zbMATH.
De Loera, Jesús A. (2007). "Review of 1st ed.". Mathematical Reviews.
Glass, Darren (February 2007). "Review of 1st ed.". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/computing-the-continuous-discretely-integer-point-enumeration-in-polyhedra.
Karpenkov, Oleg. "Review of 2nd ed.". zbMATH.
↑Reviews of An Introduction to Convex Polytopes:
Weinstein, J.. "none". zbMATH.
Barnette, D. (1984). "none". Mathematical Reviews.
Anderson, Ian (June 1984). "none". The Mathematical Gazette68 (444): 146–147. doi:10.2307/3615937.
Sallee, G. T. (March 1985). "none". SIAM Review27 (1): 123–124. doi:10.1137/1027044.
Lee, Carl W. (November 1986). "none". The American Mathematical Monthly93 (9): 750–752. doi:10.2307/2322309.
↑Reviews of Regular Polytopes:
Goldberg, M.. "Review of 1st ed.". Mathematical Reviews.
Fejes Tóth, L.. "Review of 1st ed.". zbMATH.
Cundy, H. Martyn (February 1949). "Review of 1st ed.". The Mathematical Gazette33 (303): 47–49. doi:10.2307/3608432.
Allendoerfer, C. B. (July 1949). "Review of 1st ed.". Bulletin of the American Mathematical Society55 (7): 721–723. doi:10.1090/s0002-9904-1949-09258-3. https://projecteuclid.org/euclid.bams/1183513951.
Miller, J. C. P. (July 1949). "Review of 1st ed.". Science Progress37 (147): 563–564.
Walsh, J. L. (August 1949). "Review of 1st ed.". Scientific American181 (2): 58–59.
Frueh, A. J. Jr. (November 1950). "Review of 1st ed.". The Journal of Geology58 (6): 672. doi:10.1086/625793.
Wolfe, H. E. (February 1951). "Review of 1st ed.". American Mathematical Monthly58 (2): 119–120. doi:10.2307/2308393.
Robinson, G. de B.. "Review of 2nd ed.". Mathematical Reviews.
Goldberg, Michael (January 1964). "Review of 2nd ed.". Mathematics of Computation18 (85): 166. doi:10.2307/2003446.
Yff, P. (February 1965). "Review of 2nd ed.". Canadian Mathematical Bulletin8 (1): 124. doi:10.1017/s0008439500024413.
Peak, Philip (March 1975). "Review of 3rd ed.". The Mathematics Teacher68 (3): 230.
Wenninger, Magnus J. (Winter 1976). "Review of 3rd ed.". Leonardo9 (1): 83. doi:10.2307/1573335.
Brown, Tricia Muldoon (October 2016). "Review of 3rd ed.". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/regular-polytopes.
↑Reviews of Regular Figures:
Sherk, F. A.. "none". Mathematical Reviews.
Florian, A.. "none". zbMATH.
Coxeter, H. S. M. (December 4, 1964). "Geometry". Science. New Series 146 (3649): 1288. doi:10.1126/science.146.3649.1288.
Todd, J. A. (December 1964). "none". Proceedings of the Edinburgh Mathematical Society14 (2): 174–175. doi:10.1017/s0013091500026055.
Rogers, C. A. (1965). "none". Journal of the London Mathematical Societys1-40 (1): 378. doi:10.1112/jlms/s1-40.1.378a.
Goldberg, Michael (April 1965). "none". Mathematics of Computation19 (89): 166. doi:10.2307/2004137.
Edge, W. L. (October 1965). "none". The Mathematical Gazette49 (369): 343–345. doi:10.2307/3612913.
Du Val, Patrick (August–September 1966). "none". American Mathematical Monthly73 (7): 799. doi:10.2307/2314022.
↑Reviews of Convex Polytopes:
Sallee, G. T.. "Review of 1st ed.". MathSciNet.
Jucovič, E.. "Review of 1st ed." (in German). zbMATH.
Fenchel, Werner (Winter 1968). "Review of 1st ed.". American Scientist56 (4): 476A–477A.
Baxandall, P. R. (October 1969). "Review of 1st ed.". The Mathematical Gazette53 (385): 342–343. doi:10.2307/3615008.
Ehrig, G.. "Review of 2nd ed." (in German). zbMATH.
Zvonkin, Alexander (2004). "Review of 2nd ed.". MathSciNet.
Lord, Nick (March 2005). "Review of 2nd ed.". The Mathematical Gazette89 (514): 164–166. doi:10.1017/S0025557200177307.
McMullen, Peter (July 2005). "Review of 2nd ed.". Combinatorics, Probability and Computing14 (4): 623–626. doi:10.1017/s0963548305226998.
↑Reviews of Convex Figures and Polyhedra:
Burau, W.. "Review of Russian edition" (in de). zbMATH.
Kazarinoff, N. D.. "Review of Smith translation". MathSciNet.
Eves, Howard (March 1965). "Review of Smith translation". Mathematics Magazine38 (2): 113. doi:10.2307/2688443.
↑Jucovič, E.. "Review of Reguläre und halbreguläre Polyeder" (in de). MathSciNet.
↑Reviews of Lectures in Geometric Combinatorics:
Bóna, Miklós (April 2007). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/lectures-in-geometric-combinatorics.
Gorkaviy, Vasyl. "Review of Lectures in Geometric Combinatorics". zbMATH.
mloe (June 2011). "Review of Lectures in Geometric Combinatorics". EMS Reviews. European Mathematical Society. https://euro-math-soc.eu/review/lectures-geometric-combinatorics.
Zvonkin, Alexander (2007). "Review of Lectures in Geometric Combinatorics". Mathematical Reviews.
↑Reviews of Lectures on Polytopes:
Böhm, J.. "none". zbMATH.
Bayer, Margaret M. (1996). "none". MathSciNet.
McMullen, P. (February 1996). "none". Proceedings of the Edinburgh Mathematical Society39 (1): 189–190. doi:10.1017/s0013091500022914.
↑Reviews of The Fifty-Nine Icosahedra:
Bottema, O.. "none". zbMATH.
Miller, J. C. P. (February 1939). "none". The Mathematical Gazette23 (253): 105–107. doi:10.2307/3605992.
Cundy, H. Martyn (July 2002). "none". The Mathematical Gazette86 (506): 360–361. doi:10.2307/3621904.
↑Reviews of Regular Complex Polytopes:
Jucovič, E.. "Review of 1st ed.". zbMATH.
Guggenheimer, H. W.. "Review of 1st ed.". MathSciNet.
Schwarzenberger, R. L. E. (October 1975). "Review of 1st ed.". The Mathematical Gazette59 (409): 196–197. doi:10.2307/3617711.
Grünbaum, Branko (March 1977). "Review of 1st ed.". Bulletin of the London Mathematical Society9 (1): 119–120. doi:10.1112/blms/9.1.119b.
Böhm, J.. "Review of 2nd ed.". zbMATH.
McMullen, P. (1992). "Review of 2nd ed.". MathSciNet.
Cannon, Lawrence O. (April 1992). "Review of 2nd ed.". The Mathematics Teacher85 (4): 316.
↑Reviews of Geometric Folding Algorithms:
Carbno, Collin (May 2009). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/geometric-folding-algorithms-linkages-origami-polyhedra.
Paquete, Luís (November 2009). "none". European Journal of Operational Research199 (1): 311–313. doi:10.1016/j.ejor.2008.06.009.
mbec (2011). "Review". EMS Reviews. European Mathematical Society. https://euro-math-soc.eu/review/geometric-folding-algorithms-linkages-origami-polyhedra.
Fasy, Brittany Terese; Millman, David L. (March 2011). "none". ACM SIGACT News42 (1): 43–46. doi:10.1145/1959045.1959056.
↑Reviews of Scale-Isometric Polytopal Graphs:
Dawson, Robert. "none". zbMATH.
Ding, Ren (2005). "none". MathSciNet.
↑Reviews of Proofs and Refutations:
Berg, Michael (June 2012). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/proofs-and-refutations-the-logic-of-mathematical-discovery.
De Keyser, F. (December 1977). "none". Tijdschrift voor Filosofie39 (4): 715.
Hart, W. D. (April 1978). "none". Mind. New Series 87 (346): 314–316. doi:10.1093/mind/LXXXVII.2.314.
Isaacson, Daniel (April 1978). "none". The Philosophical Quarterly28 (111): 169–171. doi:10.2307/2219364.
Kitcher, Philip (May 13, 1977). "On the uses of rigorous proof". Science. New Series 196 (4291): 782–783. doi:10.1126/science.196.4291.782. PMID 17776902.
Kneebone, G. T.. "none". zbMATH.
Lenoir, Timothy (February 1981). "none". Historia Mathematica8 (1): 99–104. doi:10.1016/0315-0860(81)90016-1.
Lercher, Bruce (1978). "none". International Studies in Philosophy10: 192–193. doi:10.5840/intstudphil19781029.
Levin, Margarita R. (September 1980). "none". Noûs14 (3): 474–478. doi:10.2307/2214971.
McFetridge, I. G. (July 1977). "none". Philosophy52 (201): 365–366. doi:10.1017/S003181910002725X.
Peak, Philip (May 1977). "none". The Mathematics Teacher70 (5): 474–475.
Quadling, D. A. (June 1977). "none". The Mathematical Gazette61 (416): 145–146. doi:10.2307/3616424.
Quine, W. V. (March 1977). "none". The British Journal for the Philosophy of Science28 (1): 81–82. doi:10.1093/bjps/28.1.81.
Russo, F. (April–June 1978). "none". Archives de Philosophie41 (2): 304–305.
Satzer, William J. (April 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/proofs-and-refutations-the-logic-of-mathematical-discovery-0.
Schramm, Alfred (1980). "Vom Vermächtnis des Imre Lakatos". Philosophische Rundschau27 (1–2): 84–100.
Toulmin, Stephen (Winter 1980). "The intellectual authority and the social context of the scientific enterprise: Holton, Rescher And Lakatos". Minerva18 (4): 652–667.
↑Review of Geometric Regular Polytopes:
Sahoo, Uma Kant. "none". zbMATH.
↑Reviews of Abstract Regular Polytopes:
Hartley, Michael Ian. "none". zbMATH.
Martini, Horst (August 2003). "none". Bulletin of the London Mathematical Society35 (5): 711–712. doi:10.1112/s0024609303219330.
Živaljević, Rade (2004). "none". MathSciNet.
↑Reviews of Convex Polytopes and the Upper Bound Conjecture:
Coxeter, H. S. M.. "none". Mathematical Reviews.
Schneider, R.. "none". zbMATH.
↑Hertel, E.. "Review of Beiträge zur Theorie der Polyeder" (in de). MathSciNet.
↑Reviews of Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem:
do Rosário Pinto, Maria. "none". zbMATH.
Hertel, E. (2003). "none". Mathematical Reviews.
↑Reviews of Realization Spaces of Polytopes:
McMullen, P.. "none". zbMATH.
Bayer, Margaret M. (1999). "none". Mathematical Reviews.
↑Reviews of Adventures Among the Toroids:
Coxeter, H. S. M.. "Review of 1st ed.". Mathematical Reviews.
Coxeter, H. S. M. (1982). "Review of 2nd ed.". Mathematical Reviews.
Crapo, Henry (1980). "Review of 2nd ed.". Structural Topology5: 45–48. http://www-iri.upc.es/people/ros/StructuralTopology/ST5/st5-09-a5-ocr.pdf.
"Review of 1st ed." (in German). zbMATH.
"Review of 2nd ed.". zbMATH.
↑Wenninger, Magnus J. (Spring 1976). "Review of Infinite Polyhedra". Leonardo9 (2): 158. doi:10.2307/1573140.
↑Reviews of A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space:
Larmore, L.. "none". Mathematical Reviews.
Freudenthal, Hans. "none". zbMATH.
↑Review of Convex Polyhedra with Regular Faces:
Pogorelov, A. V.. "Review of Russian ed.". Mathematical Reviews.
↑Chilton, J. C. (April 2000). "Review of Beyond the Cube". Journal of the International Association for Shell and Spatial Structures41 (1): 132.
↑Reviews of Shaping Space:
Lichtenberg, Donovan R. (December 1988). "Review of 1st ed.". The Mathematics Teacher81 (9): 757.
Crowe, Donald W. (January–February 1989). "Review of 1st ed.". American Scientist77 (1): 72.
Karaali, Gizem (December 2013). "Review of 2nd ed.". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/shaping-space-exploring-polyhedra-in-nature-art-and-the-geometrical-imagination.
↑Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science41 (6): 513–566. doi:10.1080/00033798400200401.
↑Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN 978-3-319-72486-7.
↑Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov" (in en,fr). Structural Topology (10): 5–22.
↑Schönflies, A. M.. "Review of Zur Morphologie der Polyeder" (in German). Jahrbuch über die Fortschritte der Mathematik.
Karakas, Alexandra (2022). "A new account of the relation between art, science, and design". Disegno6 (1): 126–130. doi:10.21096/disegno_2022_1ak.
Livingstone, Jo (April 2022). "The Polyhedrists: Linear perspective, schmlinear perspective: here are the real shapes that changed how we see". 4Columns. https://4columns.org/livingstone-jo/the-polyhedrists.
Sarkar, Amites (October 2022). "none". Math Horizons30 (2): 28. doi:10.1080/10724117.2022.2113253.
Sonar, Thomas. "none". zbMATH.
↑Reviews of Piero della Francesca's Mathematical Treatises:
Tormey, Judith Farr (Spring 1979). "none". The Journal of Aesthetics and Art Criticism37 (3): 389–390. doi:10.2307/430812.
Rose, Paul Lawrence (1980). "none". Bibliothèque d'Humanisme et Renaissance42 (2): 487–488.
Maccagni, Carlo (1979). "none". Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III)9 (4): 1909–1911.
↑Reviews of Descartes on Polyhedra:
Coxeter, H. S. M. (1984). "none". Mathematical Reviews.
Jones, Dustin L. (August 2009). "none". The Mathematics Teacher (National Council of Teachers of Mathematics) 103 (1): 87.
Karpenkov, Oleg. "none". zbMATH.
Martin, Jeremy (December 2010). "Review". Notices of the American Mathematical Society57 (11): 1448–1450. https://www.ams.org/notices/201011/rtx101101448p.pdf.
Roth, Bruce (March 2010). "none". The Mathematical Gazette94 (529): 176–177. doi:10.1017/S0025557200007397.
Satzer, William J. (October 2008). "Review". MAA Reviews (Mathematical Association of America). https://www.maa.org/press/maa-reviews/eulers-gem-the-polyhedron-formula-and-the-birth-of-topology.
Wagner, Clifford (February 2010). "none". Convergence (Mathematical Association of America). doi:10.4169/loci003291.
↑Prudence, Paul. "David Wade's 'Fantastic Geometry' – The Works of Wenzel Jamnitzer & Lorenz Stoer". Dataisnature. https://www.dataisnature.com/?p=2048.
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/List of books about polyhedra. Read more