From Handwiki
| ||||
|---|---|---|---|---|
← 180 181 182 183 184 185 186 187 188 189 → List of numbers — Integers ← 0 100 200 300 400 500 600 700 800 900 → | ||||
| Cardinal | one hundred eighty-three | |||
| Ordinal | 183rd (one hundred eighty-third) | |||
| Factorization | 3 × 61 | |||
| Divisors | 1, 3, 61, 183 | |||
| Greek numeral | ΡΠΓ´ | |||
| Roman numeral | CLXXXIII | |||
| Binary | 101101112 | |||
| Ternary | 202103 | |||
| Quaternary | 23134 | |||
| Quinary | 12135 | |||
| Senary | 5036 | |||
| Octal | 2678 | |||
| Duodecimal | 13312 | |||
| Hexadecimal | B716 | |||
| Vigesimal | 9320 | |||
| Base 36 | 5336 | |||
183 (one hundred [and] eighty-three) is the natural number following 182 and preceding 184.
183 is a perfect totient number, a number that is equal to the sum of its iterated totients.[1]
Because [math]\displaystyle{ 183 = 13^2 + 13 + 1 }[/math], it is the number of points in a projective plane over the finite field [math]\displaystyle{ \mathbb{Z}_{13} }[/math].[2] 183 is the fourth element of a divisibility sequence [math]\displaystyle{ 1,3,13,183,\dots }[/math] in which the [math]\displaystyle{ n }[/math]th number [math]\displaystyle{ a_n }[/math] can be computed as [math]\displaystyle{ a_n=a_{n-1}^2+a_{n-1}+1=\bigl\lfloor x^{2^n}\bigr\rfloor, }[/math] for a transcendental number [math]\displaystyle{ x\approx 1.38509 }[/math].[3][4] This sequence counts the number of trees of height [math]\displaystyle{ \le n }[/math] in which each node can have at most two children.[3][5]
There are 183 different semiorders on four labeled elements.[6]
![]() |
Categories: [Integers]