Boas–Buck Polynomials

From Handwiki

In mathematics, Boas–Buck polynomials are sequences of polynomials [math]\displaystyle{ \Phi_n^{(r)}(z) }[/math] defined from analytic functions [math]\displaystyle{ B }[/math] and [math]\displaystyle{ C }[/math] by generating functions of the form

[math]\displaystyle{ \displaystyle C(zt^r B(t))=\sum_{n\ge0}\Phi_n^{(r)}(z)t^n }[/math].

The case [math]\displaystyle{ r=1 }[/math], sometimes called generalized Appell polynomials, was studied by Boas and Buck (1958).

References

  • Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, https://books.google.com/books?id=eihMuwkh4DsC 




Retrieved from "https://handwiki.org/wiki/index.php?title=Boas–Buck_polynomials&oldid=44849"

Categories: [Polynomials]


Download as ZWI file | Last modified: 08/26/2023 14:01:16 | 8 views
☰ Source: https://handwiki.org/wiki/Boas–Buck_polynomials | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]