Short description: Applications of category theory
Applied category theory is an academic discipline in which methods from category theory are used to study other fields[1][2][3] including but not limited to computer science,[4][5] physics (in particular quantum mechanics[6][7][8][9]), natural language processing,[10][11][12] control theory,[13][14][15] probability theory and causality. The application of category theory in these domains can take different forms. In some cases the formalization of the domain into the language of category theory is the goal, the idea here being that this would elucidate the important structure and properties of the domain. In other cases the formalization is used to leverage the power of abstraction in order to prove new results about the field.
Contents
1List of applied category theorists
2See also
3External links
4References
List of applied category theorists
Samson Abramsky
John C. Baez
Bob Coecke
Joachim Lambek
Valeria de Paiva
Gordon Plotkin
Dana Scott
David Spivak
See also
Categorical quantum mechanics
ZX-calculus
DisCoCat
Petri net
Univalent foundations
String diagrams
External links
Journals:
Compositionality
Conferences:
Applied category theory
Symposium on Compositional Structures (SYCO)[16]
Books:
Picturing Quantum Processes
Categories for Quantum Theory
An Invitation to Applied Category Theory (preprint)
Category Theory for the Sciences (preprint)
Institutes:
the Quantum Group at the University of Oxford
TallCat, a research group at Tallinn University of Technology
Topos Institute
Cybercat Institute
Software:
DisCoPy, a Python toolkit for computing with string diagrams
CatLab.jl, a framework for applied category theory in the Julia language
↑Spivak, David I.; Fong, Brendan (July 2019). An Invitation to Applied Category Theory by Brendan Fong. doi:10.1017/9781108668804. ISBN 9781108668804.
↑Bradley, Tai-Danae (2018-09-16). "What is Applied Category Theory?". arXiv:1809.05923v2 [math.CT].
↑Barr, Michael. (1990). Category theory for computing science. Wells, Charles.. New York: Prentice Hall. ISBN 0131204866. OCLC 19126000.
↑Ehrig, Hartmut; Große-Rhode, Martin; Wolter, Uwe (1998-03-01). "Applications of Category Theory to the Area of Algebraic Specification in Computer Science". Applied Categorical Structures6 (1): 1–35. doi:10.1023/A:1008688122154. ISSN 1572-9095.
↑Abramsky, Samson; Coecke, Bob (2009), "Categorical Quantum Mechanics", Handbook of Quantum Logic and Quantum Structures (Elsevier): pp. 261–323, doi:10.1016/b978-0-444-52869-8.50010-4, ISBN 9780444528698
↑Duncan, Ross; Coecke, Bob (2011). "Interacting Quantum Observables: Categorical Algebra and Diagrammatics". New Journal of Physics13 (4): 043016. doi:10.1088/1367-2630/13/4/043016. Bibcode: 2011NJPh...13d3016C.
↑Coecke, Bob; Kissinger, Aleks (2017-03-16). Picturing quantum processes : a first course in quantum theory and diagrammatic reasoning. ISBN 978-1107104228. OCLC 1026174191.
↑Heunen, Chris; Vicary, Jamie (2019-11-19). Categories for Quantum Theory: An Introduction. ISBN 9780198739616.
↑Coecke, Bob; Sadrzadeh, Mehrnoosh; Clark, Stephen (2011), Mathematical Foundations for a Compositional Distributional Model of Meaning
↑Kartsaklis, Dimitri; Sadrzadeh, Mehrnoosh; Pulman, Stephen; Coecke, Bob (2016), "Reasoning about meaning in natural language with compact closed categories and Frobenius algebras", Logic and Algebraic Structures in Quantum Computing, Cambridge University Press, pp. 199–222, doi:10.1017/cbo9781139519687.011, ISBN 9781139519687
↑Grefenstette, Edward; Sadrzadeh, Mehrnoosh; Clark, Stephen; Coecke, Bob; Pulman, Stephen (2014), "Concrete Sentence Spaces for Compositional Distributional Models of Meaning", Text, Speech and Language Technology (Springer Netherlands): pp. 71–86, doi:10.1007/978-94-007-7284-7_5, ISBN 9789400772830
↑Bonchi, Filippo; Sobocinski, Pawel; Zanasi, Fabio (2021), "A Survey of Compositional Signal Flow Theory", Advancing Research in Information and Communication Technology. IFIP Advances in Information and Communication Technology (Springer), doi:10.1007/978-3-030-81701-5_2
↑Master, Jade; Baez, John C. (2018-08-16). "Open Petri Nets". arXiv:1808.05415v4 [math.CT].
↑Baez, John C.; Pollard, Blake S. (2018). "A compositional framework for reaction networks". Reviews in Mathematical Physics29 (9): 1750028–425. doi:10.1142/S0129055X17500283. ISSN 0129-055X. Bibcode: 2017RvMaP..2950028B.