From Handwiki In mathematics and physics, acceleration is the rate of change of velocity of a curve with respect to a given linear connection. This operation provides us with a measure of the rate and direction of the "bend".[1][2]
Consider a differentiable manifold [math]\displaystyle{ M }[/math] with a given connection [math]\displaystyle{ \Gamma }[/math]. Let [math]\displaystyle{ \gamma \colon\R \to M }[/math] be a curve in [math]\displaystyle{ M }[/math] with tangent vector, i.e. velocity, [math]\displaystyle{ {\dot\gamma}(\tau) }[/math], with parameter [math]\displaystyle{ \tau }[/math].
The acceleration vector of [math]\displaystyle{ \gamma }[/math] is defined by [math]\displaystyle{ \nabla_{\dot\gamma}{\dot\gamma} }[/math], where [math]\displaystyle{ \nabla }[/math] denotes the covariant derivative associated to [math]\displaystyle{ \Gamma }[/math].
It is a covariant derivative along [math]\displaystyle{ \gamma }[/math], and it is often denoted by
With respect to an arbitrary coordinate system [math]\displaystyle{ (x^{\mu}) }[/math], and with [math]\displaystyle{ (\Gamma^{\lambda}{}_{\mu\nu}) }[/math] being the components of the connection (i.e., covariant derivative [math]\displaystyle{ \nabla_{\mu}:=\nabla_{\partial/\partial x^\mu} }[/math]) relative to this coordinate system, defined by
for the acceleration vector field [math]\displaystyle{ a^{\mu}:=(\nabla_{\dot\gamma}{\dot\gamma})^{\mu} }[/math] one gets:
where [math]\displaystyle{ x^{\mu}(\tau):= \gamma^{\mu}(\tau) }[/math] is the local expression for the path [math]\displaystyle{ \gamma }[/math], and [math]\displaystyle{ v^{\rho}:=({\dot\gamma})^{\rho} }[/math].
The concept of acceleration is a covariant derivative concept. In other words, in order to define acceleration an additional structure on [math]\displaystyle{ M }[/math] must be given.
Using abstract index notation, the acceleration of a given curve with unit tangent vector [math]\displaystyle{ \xi^a }[/math] is given by [math]\displaystyle{ \xi^{b}\nabla_{b}\xi^{a} }[/math].[3]
![]() |
Categories: [Differential geometry] [Manifolds]