In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic. It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition.[1]
Formal notation
Commutativity of conjunction can be expressed in sequent notation as:
- [math]\displaystyle{ (P \land Q) \vdash (Q \land P) }[/math]
and
- [math]\displaystyle{ (Q \land P) \vdash (P \land Q) }[/math]
where [math]\displaystyle{ \vdash }[/math] is a metalogical symbol meaning that [math]\displaystyle{ (Q \land P) }[/math] is a syntactic consequence of [math]\displaystyle{ (P \land Q) }[/math], in the one case, and [math]\displaystyle{ (P \land Q) }[/math] is a syntactic consequence of [math]\displaystyle{ (Q \land P) }[/math] in the other, in some logical system;
or in rule form:
- [math]\displaystyle{ \frac{P \land Q}{\therefore Q \land P} }[/math]
and
- [math]\displaystyle{ \frac{Q \land P}{\therefore P \land Q} }[/math]
where the rule is that wherever an instance of "[math]\displaystyle{ (P \land Q) }[/math]" appears on a line of a proof, it can be replaced with "[math]\displaystyle{ (Q \land P) }[/math]" and wherever an instance of "[math]\displaystyle{ (Q \land P) }[/math]" appears on a line of a proof, it can be replaced with "[math]\displaystyle{ (P \land Q) }[/math]";
or as the statement of a truth-functional tautology or theorem of propositional logic:
- [math]\displaystyle{ (P \land Q) \to (Q \land P) }[/math]
and
- [math]\displaystyle{ (Q \land P) \to (P \land Q) }[/math]
where [math]\displaystyle{ P }[/math] and [math]\displaystyle{ Q }[/math] are propositions expressed in some formal system.
Generalized principle
For any propositions H1, H2, ... Hn, and permutation σ(n) of the numbers 1 through n, it is the case that:
- H1 [math]\displaystyle{ \land }[/math] H2 [math]\displaystyle{ \land }[/math] ... [math]\displaystyle{ \land }[/math] Hn
is equivalent to
- Hσ(1) [math]\displaystyle{ \land }[/math] Hσ(2) [math]\displaystyle{ \land }[/math] Hσ(n).
For example, if H1 is
- It is raining
H2 is
- Socrates is mortal
and H3 is
- 2+2=4
then
It is raining and Socrates is mortal and 2+2=4
is equivalent to
Socrates is mortal and 2+2=4 and it is raining
and the other orderings of the predicates.
References
- ↑ Elliott Mendelson (1997). Introduction to Mathematical Logic. CRC Press. ISBN 0-412-80830-7.
Classical logic |
|---|
| General |
- Quantifiers
- Predicate
- Connective
- Tautology
- Truth tables
- Truth function
- Truth value
- Well-formed formula
- Monotonicity of entailment
- Idempotency of entailment
- Logicism
- Problem of multiple generality
- Associativity
- Distribution
| |
|---|
| Classical logics |
- Propositional
- First-order
- Second-order
- Higher-order
|
|---|
| Principles |
- Commutativity of conjunction
- Excluded middle
- Bivalence
- Noncontradiction
- Explosion
|
|---|
| Rules |
- De Morgan's laws
- Material implication
- Transposition
- modus ponens
- modus tollens
- modus ponendo tollens
- Constructive dilemma
- Destructive dilemma
- Disjunctive syllogism
- Hypothetical syllogism
- Absorption
| Introduction |
- Negation
- Double negation
- Existential
- Universal
- Biconditional
- Conjunction
- Disjunction
|
|---|
| Elimination |
- Double negation
- Existential
- Universal
- Biconditional
- Conjunction
- Disjunction
|
|---|
|
|---|
| People |
- Bernard Bolzano
- George Boole
- Georg Cantor
- Richard Dedekind
- Augustus De Morgan
- Gottlob Frege
- Kurt Gödel
- Hugh MacColl
- Giuseppe Peano
- Charles Sanders Peirce
- Bertrand Russell
- Ernst Schröder
- Henry M. Sheffer
- Alfred Tarski
- Willard Van Orman Quine
- Ludwig Wittgenstein
- Jan Łukasiewicz
|
|---|
| Works |
- Begriffsschrift
- Function and Concept
- The Principles of Mathematics
- Principia Mathematica
- Tractatus Logico-Philosophicus
|
|---|
 | Original source: https://en.wikipedia.org/wiki/Commutativity of conjunction. Read more |