In probability theory, a telescoping Markov chain (TMC) is a vector-valued stochastic process that satisfies a Markov property and admits a hierarchical format through a network of transition matrices with cascading dependence.
For any [math]\displaystyle{ N\gt 1 }[/math] consider the set of spaces [math]\displaystyle{ \{\mathcal S^\ell\}_{\ell=1}^N }[/math]. The hierarchical process [math]\displaystyle{ \theta_k }[/math] defined in the product-space
- [math]\displaystyle{ \theta_k = (\theta_k^1,\ldots,\theta_k^N)\in\mathcal S^1\times\cdots\times\mathcal S^N }[/math]
is said to be a TMC if there is a set of transition probability kernels [math]\displaystyle{ \{\Lambda^n\}_{n=1}^N }[/math] such that
- [math]\displaystyle{ \theta_k^1 }[/math] is a Markov chain with transition probability matrix [math]\displaystyle{ \Lambda^1 }[/math]
- [math]\displaystyle{ \mathbb P(\theta_k^1=s\mid\theta_{k-1}^1=r)=\Lambda^1(s\mid r) }[/math]
- there is a cascading dependence in every level of the hierarchy,
- [math]\displaystyle{ \mathbb P(\theta_k^n=s\mid\theta_{k-1}^n=r,\theta_k^{n-1}=t)=\Lambda^n(s\mid r,t) }[/math] for all [math]\displaystyle{ n\geq 2. }[/math]
- [math]\displaystyle{ \theta_k }[/math] satisfies a Markov property with a transition kernel that can be written in terms of the [math]\displaystyle{ \Lambda }[/math]'s,
- [math]\displaystyle{ \mathbb P(\theta_{k+1}=\vec s\mid \theta_k=\vec r) = \Lambda^1(s_1\mid r_1) \prod_{\ell=2}^N \Lambda^\ell(s_\ell \mid r_\ell,s_{\ell-1}) }[/math]
- where [math]\displaystyle{ \vec s = (s_1,\ldots,s_N)\in\mathcal S^1\times\cdots\times\mathcal S^N }[/math] and [math]\displaystyle{ \vec r = (r_1,\ldots,r_N)\in\mathcal S^1\times\cdots\times\mathcal S^N. }[/math]
| This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. Please help improve this article. Unsourced material may be removed in future. Find sources: "Telescoping Markov chain" – news · newspapers · books · scholar · JSTOR (2021) (Learn how and when to remove this template message) |
 | Original source: https://en.wikipedia.org/wiki/Telescoping Markov chain. Read more |