Log-Linear Model

From Handwiki

A log-linear model is a mathematical model that takes the form of a function whose logarithm equals a linear combination of the parameters of the model, which makes it possible to apply (possibly multivariate) linear regression. That is, it has the general form

[math]\displaystyle{ \exp \left(c + \sum_{i} w_i f_i(X) \right) }[/math],

in which the fi(X) are quantities that are functions of the variable X, in general a vector of values, while c and the wi stand for the model parameters.

The term may specifically be used for:

  • A log-linear plot or graph, which is a type of semi-log plot.
  • Poisson regression for contingency tables, a type of generalized linear model.

The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X, or more immediately, the transformed quantities fi(X) in the range −∞ to +∞. This may be contrasted to logistic models, similar to the logistic function, for which the output quantity lies in the range 0 to 1. Thus the contexts where these models are useful or realistic often depends on the range of the values being modelled.

See also

  • Log-linear analysis
  • General linear model
  • Generalized linear model
  • Boltzmann distribution
  • Elasticity

Further reading

  • Gujarati, Damodar N.; Porter, Dawn C. (2009). "How to Measure Elasticity: The Log-Linear Model". Basic Econometrics. New York: McGraw-Hill/Irwin. pp. 159–162. ISBN 978-0-07-337577-9. 



Retrieved from "https://handwiki.org/wiki/index.php?title=Log-linear_model&oldid=118378"

Categories: [Log-linear models]


Download as ZWI file | Last modified: 06/22/2023 18:06:07 | 2 views
☰ Source: https://handwiki.org/wiki/Log-linear_model | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]