In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.
A topological vector space is locally convex if and only if its topology is induced by a family of seminorms.
Contents
1Definition
2Examples
3Minkowski functionals and seminorms
4Algebraic properties
4.1Relationship to other norm-like concepts
4.2Inequalities involving seminorms
4.3Hahn–Banach theorem for seminorms
5Topologies of seminormed spaces
5.1Pseudometrics and the induced topology
5.1.1Stronger, weaker, and equivalent seminorms
5.2Normability and seminormability
5.3Topological properties
5.4Continuity of seminorms
5.5Continuity of linear maps
6Generalizations
7See also
8Notes
9References
10External links
Definition
Let [math]\displaystyle{ X }[/math] be a vector space over either the real numbers [math]\displaystyle{ \R }[/math] or the complex numbers [math]\displaystyle{ \Complex. }[/math]
A real-valued function [math]\displaystyle{ p : X \to \R }[/math] is called a seminorm if it satisfies the following two conditions:
Subadditivity[1]/Triangle inequality: [math]\displaystyle{ p(x + y) \leq p(x) + p(y) }[/math] for all [math]\displaystyle{ x, y \in X. }[/math]
Absolute homogeneity:[1][math]\displaystyle{ p(s x) =|s|p(x) }[/math] for all [math]\displaystyle{ x \in X }[/math] and all scalars [math]\displaystyle{ s. }[/math]
These two conditions imply that [math]\displaystyle{ p(0) = 0 }[/math][proof 1] and that every seminorm [math]\displaystyle{ p }[/math] also has the following property:[proof 2]
Nonnegativity:[1][math]\displaystyle{ p(x) \geq 0 }[/math] for all [math]\displaystyle{ x \in X. }[/math]
Some authors include non-negativity as part of the definition of "seminorm" (and also sometimes of "norm"), although this is not necessary since it follows from the other two properties.
By definition, a norm on [math]\displaystyle{ X }[/math] is a seminorm that also separates points, meaning that it has the following additional property:
Positive definite/Positive[1]/Point-separating: whenever [math]\displaystyle{ x \in X }[/math] satisfies [math]\displaystyle{ p(x) = 0, }[/math] then [math]\displaystyle{ x = 0. }[/math]
A seminormed space is a pair [math]\displaystyle{ (X, p) }[/math] consisting of a vector space [math]\displaystyle{ X }[/math] and a seminorm [math]\displaystyle{ p }[/math] on [math]\displaystyle{ X. }[/math] If the seminorm [math]\displaystyle{ p }[/math] is also a norm then the seminormed space [math]\displaystyle{ (X, p) }[/math] is called a normed space.
Since absolute homogeneity implies positive homogeneity, every seminorm is a type of function called a sublinear function. A map [math]\displaystyle{ p : X \to \R }[/math] is called a sublinear function if it is subadditive and positive homogeneous. Unlike a seminorm, a sublinear function is not necessarily nonnegative. Sublinear functions are often encountered in the context of the Hahn–Banach theorem.
A real-valued function [math]\displaystyle{ p : X \to \R }[/math] is a seminorm if and only if it is a sublinear and balanced function.
Examples
The trivial seminorm on [math]\displaystyle{ X, }[/math] which refers to the constant [math]\displaystyle{ 0 }[/math] map on [math]\displaystyle{ X, }[/math] induces the indiscrete topology on [math]\displaystyle{ X. }[/math]
Let [math]\displaystyle{ \mu }[/math] be a measure on a space [math]\displaystyle{ \Omega }[/math]. For an arbitrary constant [math]\displaystyle{ c \geq 1 }[/math], let [math]\displaystyle{ X }[/math] be the set of all functions [math]\displaystyle{ f: \Omega \rightarrow \mathbb{R} }[/math] for which
[math]\displaystyle{ \lVert f \rVert_c := \left( \int_{\Omega}| f |^c \, d\mu \right)^{1/c} }[/math]
exists and is finite. It can be shown that [math]\displaystyle{ X }[/math] is a vector space, and the functional [math]\displaystyle{ \lVert \cdot \rVert_c }[/math] is a seminorm on [math]\displaystyle{ X }[/math]. However, it is not always a norm (e.g. if [math]\displaystyle{ \Omega = \mathbb{R} }[/math] and [math]\displaystyle{ \mu }[/math] is the Lebesgue measure) because [math]\displaystyle{ \lVert h \rVert_c = 0 }[/math] does not always imply [math]\displaystyle{ h = 0 }[/math]. To make [math]\displaystyle{ \lVert \cdot \rVert_c }[/math] a norm, quotient [math]\displaystyle{ X }[/math] by the closed subspace of functions [math]\displaystyle{ h }[/math] with [math]\displaystyle{ \lVert h \rVert_c = 0 }[/math]. The resulting space, [math]\displaystyle{ L^c(\mu) }[/math], has a norm induced by [math]\displaystyle{ \lVert \cdot \rVert_c }[/math].
If [math]\displaystyle{ f }[/math] is any linear form on a vector space then its absolute value [math]\displaystyle{ |f|, }[/math] defined by [math]\displaystyle{ x \mapsto |f(x)|, }[/math] is a seminorm.
A sublinear function [math]\displaystyle{ f : X \to \R }[/math] on a real vector space [math]\displaystyle{ X }[/math] is a seminorm if and only if it is a symmetric function, meaning that [math]\displaystyle{ f(-x) = f(x) }[/math] for all [math]\displaystyle{ x \in X. }[/math]
Every real-valued sublinear function [math]\displaystyle{ f : X \to \R }[/math] on a real vector space [math]\displaystyle{ X }[/math] induces a seminorm [math]\displaystyle{ p : X \to \R }[/math] defined by [math]\displaystyle{ p(x) := \max \{f(x), f(-x)\}. }[/math][2]
Any finite sum of seminorms is a seminorm. The restriction of a seminorm (respectively, norm) to a vector subspace is once again a seminorm (respectively, norm).
If [math]\displaystyle{ p : X \to \R }[/math] and [math]\displaystyle{ q : Y \to \R }[/math] are seminorms (respectively, norms) on [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] then the map [math]\displaystyle{ r : X \times Y \to \R }[/math] defined by [math]\displaystyle{ r(x, y) = p(x) + q(y) }[/math] is a seminorm (respectively, a norm) on [math]\displaystyle{ X \times Y. }[/math] In particular, the maps on [math]\displaystyle{ X \times Y }[/math] defined by [math]\displaystyle{ (x, y) \mapsto p(x) }[/math] and [math]\displaystyle{ (x, y) \mapsto q(y) }[/math] are both seminorms on [math]\displaystyle{ X \times Y. }[/math]
If [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are seminorms on [math]\displaystyle{ X }[/math] then so are[3][math]\displaystyle{ (p \vee q)(x) = \max \{p(x), q(x)\} }[/math] and [math]\displaystyle{ (p \wedge q)(x) := \inf \{p(y) + q(z) : x = y + z \text{ with } y, z \in X\} }[/math]
where [math]\displaystyle{ p \wedge q \leq p }[/math] and [math]\displaystyle{ p \wedge q \leq q. }[/math][4]
The space of seminorms on [math]\displaystyle{ X }[/math] is generally not a distributive lattice with respect to the above operations. For example, over [math]\displaystyle{ \R^2 }[/math], [math]\displaystyle{ p(x, y) := \max(|x|, |y|), q(x, y) := 2|x|, r(x, y) := 2|y| }[/math] are such that
[math]\displaystyle{ ((p \vee q) \wedge (p \vee r)) (x, y) = \inf \{\max(2|x_1|, |y_1|) + \max(|x_2|, 2|y_2|) : x = x_1 + x_2 \text{ and } y = y_1 + y_2\} }[/math] while [math]\displaystyle{ (p \vee q \wedge r) (x, y) := \max(|x|, |y|) }[/math]
If [math]\displaystyle{ L : X \to Y }[/math] is a linear map and [math]\displaystyle{ q : Y \to \R }[/math] is a seminorm on [math]\displaystyle{ Y, }[/math] then [math]\displaystyle{ q \circ L : X \to \R }[/math] is a seminorm on [math]\displaystyle{ X. }[/math] The seminorm [math]\displaystyle{ q \circ L }[/math] will be a norm on [math]\displaystyle{ X }[/math] if and only if [math]\displaystyle{ L }[/math] is injective and the restriction [math]\displaystyle{ q\big\vert_{L(X)} }[/math] is a norm on [math]\displaystyle{ L(X). }[/math]
Minkowski functionals and seminorms
Main page: Minkowski functional
Seminorms on a vector space [math]\displaystyle{ X }[/math] are intimately tied, via Minkowski functionals, to subsets of [math]\displaystyle{ X }[/math] that are convex, balanced, and absorbing. Given such a subset [math]\displaystyle{ D }[/math] of [math]\displaystyle{ X, }[/math] the Minkowski functional of [math]\displaystyle{ D }[/math] is a seminorm. Conversely, given a seminorm [math]\displaystyle{ p }[/math] on [math]\displaystyle{ X, }[/math] the sets[math]\displaystyle{ \{x \in X : p(x) \lt 1\} }[/math] and [math]\displaystyle{ \{x \in X : p(x) \leq 1\} }[/math] are convex, balanced, and absorbing and furthermore, the Minkowski functional of these two sets (as well as of any set lying "in between them") is [math]\displaystyle{ p. }[/math][5]
Algebraic properties
Every seminorm is a sublinear function, and thus satisfies all properties of a sublinear function, including convexity, [math]\displaystyle{ p(0) = 0, }[/math] and for all vectors [math]\displaystyle{ x, y \in X }[/math]:
the reverse triangle inequality: [6][7][math]\displaystyle{ |p(x) - p(y)| \leq p(x - y) }[/math]
and also
[math]\displaystyle{ 0 \leq \max \{p(x), p(-x)\} }[/math] and [math]\displaystyle{ p(x) - p(y) \leq p(x - y). }[/math][6][7]
For any vector [math]\displaystyle{ x \in X }[/math] and positive real [math]\displaystyle{ r \gt 0: }[/math][8][math]\displaystyle{ x + \{y \in X : p(y) \lt r\} = \{y \in X : p(x - y) \lt r\} }[/math]
and furthermore, [math]\displaystyle{ \{x \in X : p(x) \lt r\} }[/math] is an absorbing disk in [math]\displaystyle{ X. }[/math][3]
If [math]\displaystyle{ p }[/math] is a sublinear function on a real vector space [math]\displaystyle{ X }[/math] then there exists a linear functional [math]\displaystyle{ f }[/math] on [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ f \leq p }[/math][7] and furthermore, for any linear functional [math]\displaystyle{ g }[/math] on [math]\displaystyle{ X, }[/math][math]\displaystyle{ g \leq p }[/math] on [math]\displaystyle{ X }[/math] if and only if [math]\displaystyle{ g^{-1}(1) \cap \{x \in X : p(x) \lt 1 = \varnothing\}. }[/math][7]
Other properties of seminorms
Every seminorm is a balanced function.
A seminorm [math]\displaystyle{ p }[/math] is a norm on [math]\displaystyle{ X }[/math] if and only if [math]\displaystyle{ \{x \in X : p(x) \lt 1\} }[/math] does not contain a non-trivial vector subspace.
If [math]\displaystyle{ p : X \to [0, \infty) }[/math] is a seminorm on [math]\displaystyle{ X }[/math] then [math]\displaystyle{ \ker p := p^{-1}(0) }[/math] is a vector subspace of [math]\displaystyle{ X }[/math] and for every [math]\displaystyle{ x \in X, }[/math][math]\displaystyle{ p }[/math] is constant on the set [math]\displaystyle{ x + \ker p = \{x + k : p(k) = 0\} }[/math] and equal to [math]\displaystyle{ p(x). }[/math][proof 3]
Furthermore, for any real [math]\displaystyle{ r \gt 0, }[/math][3][math]\displaystyle{ r \{x \in X : p(x) \lt 1\} = \{x \in X : p(x) \lt r\} = \left\{x \in X : \tfrac{1}{r} p(x) \lt 1 \right\}. }[/math]
If [math]\displaystyle{ D }[/math] is a set satisfying [math]\displaystyle{ \{x \in X : p(x) \lt 1\} \subseteq D \subseteq \{x \in X : p(x) \leq 1\} }[/math] then [math]\displaystyle{ D }[/math] is absorbing in [math]\displaystyle{ X }[/math] and [math]\displaystyle{ p = p_D }[/math] where [math]\displaystyle{ p_D }[/math] denotes the Minkowski functional associated with [math]\displaystyle{ D }[/math] (that is, the gauge of [math]\displaystyle{ D }[/math]).[5] In particular, if [math]\displaystyle{ D }[/math] is as above and [math]\displaystyle{ q }[/math] is any seminorm on [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ q = p }[/math] if and only if [math]\displaystyle{ \{x \in X : q(x) \lt 1\} \subseteq D \subseteq \{x \in X : q(x) \leq\}. }[/math][5]
If [math]\displaystyle{ (X, \|\,\cdot\,\|) }[/math] is a normed space and [math]\displaystyle{ x, y \in X }[/math] then [math]\displaystyle{ \|x - y\| = \|x - z\| + \|z - y\| }[/math] for all [math]\displaystyle{ z }[/math] in the interval [math]\displaystyle{ [x, y]. }[/math][9]
Every norm is a convex function and consequently, finding a global maximum of a norm-based objective function is sometimes tractable.
Relationship to other norm-like concepts
Let [math]\displaystyle{ p : X \to \R }[/math] be a non-negative function. The following are equivalent:
[math]\displaystyle{ p }[/math] is a seminorm.
[math]\displaystyle{ p }[/math] is a convex [math]\displaystyle{ F }[/math]-seminorm.
[math]\displaystyle{ p }[/math] is a convex balanced G-seminorm.[10]
If any of the above conditions hold, then the following are equivalent:
[math]\displaystyle{ p }[/math] is a norm;
[math]\displaystyle{ \{x \in X : p(x) \lt 1\} }[/math] does not contain a non-trivial vector subspace.[11]
There exists a norm on [math]\displaystyle{ X, }[/math] with respect to which, [math]\displaystyle{ \{x \in X : p(x) \lt 1\} }[/math] is bounded.
If [math]\displaystyle{ p }[/math] is a sublinear function on a real vector space [math]\displaystyle{ X }[/math] then the following are equivalent:[7]
[math]\displaystyle{ p }[/math] is a linear functional;
[math]\displaystyle{ p(x) + p(-x) \leq 0 \text{ for every } x \in X }[/math];
[math]\displaystyle{ p(x) + p(-x) = 0 \text{ for every } x \in X }[/math];
Inequalities involving seminorms
If [math]\displaystyle{ p, q : X \to [0, \infty) }[/math] are seminorms on [math]\displaystyle{ X }[/math] then:
[math]\displaystyle{ p \leq q }[/math] if and only if [math]\displaystyle{ q(x) \leq 1 }[/math] implies [math]\displaystyle{ p(x) \leq 1. }[/math][12]
If [math]\displaystyle{ a \gt 0 }[/math] and [math]\displaystyle{ b \gt 0 }[/math] are such that [math]\displaystyle{ p(x) \lt a }[/math] implies [math]\displaystyle{ q(x) \leq b, }[/math] then [math]\displaystyle{ a q(x) \leq b p(x) }[/math] for all [math]\displaystyle{ x \in X. }[/math][13]
Suppose [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are positive real numbers and [math]\displaystyle{ q, p_1, \ldots, p_n }[/math] are seminorms on [math]\displaystyle{ X }[/math] such that for every [math]\displaystyle{ x \in X, }[/math] if [math]\displaystyle{ \max \{p_1(x), \ldots, p_n(x)\} \lt a }[/math] then [math]\displaystyle{ q(x) \lt b. }[/math] Then [math]\displaystyle{ a q \leq b \left(p_1 + \cdots + p_n\right). }[/math][11]
If [math]\displaystyle{ X }[/math] is a vector space over the reals and [math]\displaystyle{ f }[/math] is a non-zero linear functional on [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ f \leq p }[/math] if and only if [math]\displaystyle{ \varnothing = f^{-1}(1) \cap \{x \in X : p(x) \lt 1\}. }[/math][12]
If [math]\displaystyle{ p }[/math] is a seminorm on [math]\displaystyle{ X }[/math] and [math]\displaystyle{ f }[/math] is a linear functional on [math]\displaystyle{ X }[/math] then:
[math]\displaystyle{ |f| \leq p }[/math] on [math]\displaystyle{ X }[/math] if and only if [math]\displaystyle{ \operatorname{Re} f \leq p }[/math] on [math]\displaystyle{ X }[/math] (see footnote for proof).[14][15]
[math]\displaystyle{ f \leq p }[/math] on [math]\displaystyle{ X }[/math] if and only if [math]\displaystyle{ f^{-1}(1) \cap \{x \in X : p(x) \lt 1 = \varnothing\}. }[/math][7][12]
If [math]\displaystyle{ a \gt 0 }[/math] and [math]\displaystyle{ b \gt 0 }[/math] are such that [math]\displaystyle{ p(x) \lt a }[/math] implies [math]\displaystyle{ f(x) \neq b, }[/math] then [math]\displaystyle{ a |f(x)| \leq b p(x) }[/math] for all [math]\displaystyle{ x \in X. }[/math][13]
Hahn–Banach theorem for seminorms
Seminorms offer a particularly clean formulation of the Hahn–Banach theorem:
If [math]\displaystyle{ M }[/math] is a vector subspace of a seminormed space [math]\displaystyle{ (X, p) }[/math] and if [math]\displaystyle{ f }[/math] is a continuous linear functional on [math]\displaystyle{ M, }[/math] then [math]\displaystyle{ f }[/math] may be extended to a continuous linear functional [math]\displaystyle{ F }[/math] on [math]\displaystyle{ X }[/math] that has the same norm as [math]\displaystyle{ f. }[/math][16]
A similar extension property also holds for seminorms:
Theorem[17][13](Extending seminorms) — If [math]\displaystyle{ M }[/math] is a vector subspace of [math]\displaystyle{ X, }[/math][math]\displaystyle{ p }[/math] is a seminorm on [math]\displaystyle{ M, }[/math] and [math]\displaystyle{ q }[/math] is a seminorm on [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ p \leq q\big\vert_M, }[/math] then there exists a seminorm [math]\displaystyle{ P }[/math] on [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ P\big\vert_M = p }[/math] and [math]\displaystyle{ P \leq q. }[/math]
Proof: Let [math]\displaystyle{ S }[/math] be the convex hull of [math]\displaystyle{ \{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}. }[/math] Then [math]\displaystyle{ S }[/math] is an absorbing disk in [math]\displaystyle{ X }[/math] and so the Minkowski functional [math]\displaystyle{ P }[/math] of [math]\displaystyle{ S }[/math] is a seminorm on [math]\displaystyle{ X. }[/math] This seminorm satisfies [math]\displaystyle{ p = P }[/math] on [math]\displaystyle{ M }[/math] and [math]\displaystyle{ P \leq q }[/math] on [math]\displaystyle{ X. }[/math][math]\displaystyle{ \blacksquare }[/math]
Topologies of seminormed spaces
Pseudometrics and the induced topology
A seminorm [math]\displaystyle{ p }[/math] on [math]\displaystyle{ X }[/math] induces a topology, called the seminorm-induced topology, via the canonical translation-invariant pseudometric [math]\displaystyle{ d_p : X \times X \to \R }[/math]; [math]\displaystyle{ d_p(x, y) := p(x - y) = p(y - x). }[/math]
This topology is Hausdorff if and only if [math]\displaystyle{ d_p }[/math] is a metric, which occurs if and only if [math]\displaystyle{ p }[/math] is a norm.[4]
This topology makes [math]\displaystyle{ X }[/math] into a locally convex pseudometrizable topological vector space that has a bounded neighborhood of the origin and a neighborhood basis at the origin consisting of the following open balls (or the closed balls) centered at the origin:
[math]\displaystyle{ \{x \in X : p(x) \lt r\} \quad \text{ or } \quad \{x \in X : p(x) \leq r\} }[/math]
as [math]\displaystyle{ r \gt 0 }[/math] ranges over the positive reals.
Every seminormed space [math]\displaystyle{ (X, p) }[/math] should be assumed to be endowed with this topology unless indicated otherwise. A topological vector space whose topology is induced by some seminorm is called seminormable.
Equivalently, every vector space [math]\displaystyle{ X }[/math] with seminorm [math]\displaystyle{ p }[/math] induces a vector space quotient [math]\displaystyle{ X / W, }[/math] where [math]\displaystyle{ W }[/math] is the subspace of [math]\displaystyle{ X }[/math] consisting of all vectors [math]\displaystyle{ x \in X }[/math] with [math]\displaystyle{ p(x) = 0. }[/math] Then [math]\displaystyle{ X / W }[/math] carries a norm defined by [math]\displaystyle{ p(x + W) = p(v). }[/math] The resulting topology, pulled back to [math]\displaystyle{ X, }[/math] is precisely the topology induced by [math]\displaystyle{ p. }[/math]
Any seminorm-induced topology makes [math]\displaystyle{ X }[/math] locally convex, as follows. If [math]\displaystyle{ p }[/math] is a seminorm on [math]\displaystyle{ X }[/math] and [math]\displaystyle{ r \in \R, }[/math] call the set [math]\displaystyle{ \{x \in X : p(x) \lt r\} }[/math] the open ball of radius [math]\displaystyle{ r }[/math] about the origin; likewise the closed ball of radius [math]\displaystyle{ r }[/math] is [math]\displaystyle{ \{x \in X : p(x) \leq r\}. }[/math] The set of all open (resp. closed) [math]\displaystyle{ p }[/math]-balls at the origin forms a neighborhood basis of convex balanced sets that are open (resp. closed) in the [math]\displaystyle{ p }[/math]-topology on [math]\displaystyle{ X. }[/math]
Stronger, weaker, and equivalent seminorms
The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker norms. If [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are seminorms on [math]\displaystyle{ X, }[/math] then we say that [math]\displaystyle{ q }[/math] is stronger than [math]\displaystyle{ p }[/math] and that [math]\displaystyle{ p }[/math] is weaker than [math]\displaystyle{ q }[/math] if any of the following equivalent conditions holds:
The topology on [math]\displaystyle{ X }[/math] induced by [math]\displaystyle{ q }[/math] is finer than the topology induced by [math]\displaystyle{ p. }[/math]
If [math]\displaystyle{ x_{\bull} = \left(x_i\right)_{i=1}^{\infty} }[/math] is a sequence in [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0 }[/math] in [math]\displaystyle{ \R }[/math] implies [math]\displaystyle{ p\left(x_{\bull}\right) \to 0 }[/math] in [math]\displaystyle{ \R. }[/math][4]
If [math]\displaystyle{ x_{\bull} = \left(x_i\right)_{i \in I} }[/math] is a net in [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i \in I} \to 0 }[/math] in [math]\displaystyle{ \R }[/math] implies [math]\displaystyle{ p\left(x_{\bull}\right) \to 0 }[/math] in [math]\displaystyle{ \R. }[/math]
[math]\displaystyle{ p }[/math] is bounded on [math]\displaystyle{ \{x \in X : q(x) \lt 1\}. }[/math][4]
If [math]\displaystyle{ \inf{} \{q(x) : p(x) = 1, x \in X\} = 0 }[/math] then [math]\displaystyle{ p(x) = 0 }[/math] for all [math]\displaystyle{ x \in X. }[/math][4]
There exists a real [math]\displaystyle{ K \gt 0 }[/math] such that [math]\displaystyle{ p \leq K q }[/math] on [math]\displaystyle{ X. }[/math][4]
The seminorms [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are called equivalent if they are both weaker (or both stronger) than each other. This happens if they satisfy any of the following conditions:
The topology on [math]\displaystyle{ X }[/math] induced by [math]\displaystyle{ q }[/math] is the same as the topology induced by [math]\displaystyle{ p. }[/math]
[math]\displaystyle{ q }[/math] is stronger than [math]\displaystyle{ p }[/math] and [math]\displaystyle{ p }[/math] is stronger than [math]\displaystyle{ q. }[/math][4]
If [math]\displaystyle{ x_{\bull} = \left(x_i\right)_{i=1}^{\infty} }[/math] is a sequence in [math]\displaystyle{ X }[/math] then [math]\displaystyle{ q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0 }[/math] if and only if [math]\displaystyle{ p\left(x_{\bull}\right) \to 0. }[/math]
There exist positive real numbers [math]\displaystyle{ r \gt 0 }[/math] and [math]\displaystyle{ R \gt 0 }[/math] such that [math]\displaystyle{ r q \leq p \leq R q. }[/math]
Normability and seminormability
A topological vector space (TVS) is said to be a seminormable space (respectively, a normable space) if its topology is induced by a single seminorm (resp. a single norm).
A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and T1 (because a TVS is Hausdorff if and only if it is a T1 space).
A locally bounded topological vector space is a topological vector space that possesses a bounded neighborhood of the origin.
Normability of topological vector spaces is characterized by Kolmogorov's normability criterion.
A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin.[18]
Thus a locally convex TVS is seminormable if and only if it has a non-empty bounded open set.[19]
A TVS is normable if and only if it is a T1 space and admits a bounded convex neighborhood of the origin.
If [math]\displaystyle{ X }[/math] is a Hausdorff locally convex TVS then the following are equivalent:
[math]\displaystyle{ X }[/math] is normable.
[math]\displaystyle{ X }[/math] is seminormable.
[math]\displaystyle{ X }[/math] has a bounded neighborhood of the origin.
The strong dual [math]\displaystyle{ X^{\prime}_b }[/math] of [math]\displaystyle{ X }[/math] is normable.[20]
The strong dual [math]\displaystyle{ X^{\prime}_b }[/math] of [math]\displaystyle{ X }[/math] is metrizable.[20]
Furthermore, [math]\displaystyle{ X }[/math] is finite dimensional if and only if [math]\displaystyle{ X^{\prime}_{\sigma} }[/math] is normable (here [math]\displaystyle{ X^{\prime}_{\sigma} }[/math] denotes [math]\displaystyle{ X^{\prime} }[/math] endowed with the weak-* topology).
The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional).[21]
Topological properties
If [math]\displaystyle{ X }[/math] is a TVS and [math]\displaystyle{ p }[/math] is a continuous seminorm on [math]\displaystyle{ X, }[/math] then the closure of [math]\displaystyle{ \{x \in X : p(x) \lt r\} }[/math] in [math]\displaystyle{ X }[/math] is equal to [math]\displaystyle{ \{x \in X : p(x) \leq r\}. }[/math][3]
The closure of [math]\displaystyle{ \{0\} }[/math] in a locally convex space [math]\displaystyle{ X }[/math] whose topology is defined by a family of continuous seminorms [math]\displaystyle{ \mathcal{P} }[/math] is equal to [math]\displaystyle{ \bigcap_{p \in \mathcal{P}} p^{-1}(0). }[/math][22]
A subset [math]\displaystyle{ S }[/math] in a seminormed space [math]\displaystyle{ (X, p) }[/math] is bounded if and only if [math]\displaystyle{ p(S) }[/math] is bounded.[23]
If [math]\displaystyle{ (X, p) }[/math] is a seminormed space then the locally convex topology that [math]\displaystyle{ p }[/math] induces on [math]\displaystyle{ X }[/math] makes [math]\displaystyle{ X }[/math] into a pseudometrizable TVS with a canonical pseudometric given by [math]\displaystyle{ d(x, y) := p(x - y) }[/math] for all [math]\displaystyle{ x, y \in X. }[/math][24]
The product of infinitely many seminormable spaces is again seminormable if and only if all but finitely many of these spaces are trivial (that is, 0-dimensional).[21]
Continuity of seminorms
If [math]\displaystyle{ p }[/math] is a seminorm on a topological vector space [math]\displaystyle{ X, }[/math] then the following are equivalent:[5]
[math]\displaystyle{ p }[/math] is continuous.
[math]\displaystyle{ p }[/math] is continuous at 0;[3]
[math]\displaystyle{ \{x \in X : p(x) \lt 1\} }[/math] is open in [math]\displaystyle{ X }[/math];[3]
[math]\displaystyle{ \{x \in X : p(x) \leq 1\} }[/math] is closed neighborhood of 0 in [math]\displaystyle{ X }[/math];[3]
[math]\displaystyle{ p }[/math] is uniformly continuous on [math]\displaystyle{ X }[/math];[3]
There exists a continuous seminorm [math]\displaystyle{ q }[/math] on [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ p \leq q. }[/math][3]
In particular, if [math]\displaystyle{ (X, p) }[/math] is a seminormed space then a seminorm [math]\displaystyle{ q }[/math] on [math]\displaystyle{ X }[/math] is continuous if and only if [math]\displaystyle{ q }[/math] is dominated by a positive scalar multiple of [math]\displaystyle{ p. }[/math][3]
If [math]\displaystyle{ X }[/math] is a real TVS, [math]\displaystyle{ f }[/math] is a linear functional on [math]\displaystyle{ X, }[/math] and [math]\displaystyle{ p }[/math] is a continuous seminorm (or more generally, a sublinear function) on [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ f \leq p }[/math] on [math]\displaystyle{ X }[/math] implies that [math]\displaystyle{ f }[/math] is continuous.[7]
Continuity of linear maps
If [math]\displaystyle{ F : (X, p) \to (Y, q) }[/math] is a map between seminormed spaces then let[16][math]\displaystyle{ \|F\|_{p,q} := \sup \{q(F(x)) : p(x) \leq 1, x \in X\}. }[/math]
If [math]\displaystyle{ F : (X, p) \to (Y, q) }[/math] is a linear map between seminormed spaces then the following are equivalent:
There exists a real [math]\displaystyle{ K \geq 0 }[/math] such that [math]\displaystyle{ p \leq K q }[/math];[16]
In this case, [math]\displaystyle{ \|F\|_{p,q} \leq K. }[/math]
If [math]\displaystyle{ F }[/math] is continuous then [math]\displaystyle{ q(F(x)) \leq \|F\|_{p,q} p(x) }[/math] for all [math]\displaystyle{ x \in X. }[/math][16]
The space of all continuous linear maps [math]\displaystyle{ F : (X, p) \to (Y, q) }[/math] between seminormed spaces is itself a seminormed space under the seminorm [math]\displaystyle{ \|F\|_{p,q}. }[/math]
This seminorm is a norm if [math]\displaystyle{ q }[/math] is a norm.[16]
Generalizations
The concept of norm in composition algebras does not share the usual properties of a norm.
A composition algebra [math]\displaystyle{ (A, *, N) }[/math] consists of an algebra over a field [math]\displaystyle{ A, }[/math] an involution [math]\displaystyle{ \,*, }[/math] and a quadratic form [math]\displaystyle{ N, }[/math] which is called the "norm". In several cases [math]\displaystyle{ N }[/math] is an isotropic quadratic form so that [math]\displaystyle{ A }[/math] has at least one null vector, contrary to the separation of points required for the usual norm discussed in this article.
An ultraseminorm or a non-Archimedean seminorm is a seminorm [math]\displaystyle{ p : X \to \R }[/math] that also satisfies [math]\displaystyle{ p(x + y) \leq \max \{p(x), p(y)\} \text{ for all } x, y \in X. }[/math]
Weakening subadditivity: Quasi-seminorms
A map [math]\displaystyle{ p : X \to \R }[/math] is called a quasi-seminorm if it is (absolutely) homogeneous and there exists some [math]\displaystyle{ b \leq 1 }[/math] such that [math]\displaystyle{ p(x + y) \leq b p(p(x) + p(y)) \text{ for all } x, y \in X. }[/math]
The smallest value of [math]\displaystyle{ b }[/math] for which this holds is called the multiplier of [math]\displaystyle{ p. }[/math]
A quasi-seminorm that separates points is called a quasi-norm on [math]\displaystyle{ X. }[/math]
Weakening homogeneity - [math]\displaystyle{ k }[/math]-seminorms
A map [math]\displaystyle{ p : X \to \R }[/math] is called a [math]\displaystyle{ k }[/math]-seminorm if it is subadditive and there exists a [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ 0 \lt k \leq 1 }[/math] and for all [math]\displaystyle{ x \in X }[/math] and scalars [math]\displaystyle{ s, }[/math][math]\displaystyle{ p(s x) = |s|^k p(x) }[/math] A [math]\displaystyle{ k }[/math]-seminorm that separates points is called a [math]\displaystyle{ k }[/math]-norm on [math]\displaystyle{ X. }[/math]
We have the following relationship between quasi-seminorms and [math]\displaystyle{ k }[/math]-seminorms:
Suppose that [math]\displaystyle{ q }[/math] is a quasi-seminorm on a vector space [math]\displaystyle{ X }[/math] with multiplier [math]\displaystyle{ b. }[/math] If [math]\displaystyle{ 0 \lt \sqrt{k} \lt \log_2 b }[/math] then there exists [math]\displaystyle{ k }[/math]-seminorm [math]\displaystyle{ p }[/math] on [math]\displaystyle{ X }[/math] equivalent to [math]\displaystyle{ q. }[/math]
See also
Asymmetric norm – Generalization of the concept of a norm
Banach space – Normed vector space that is complete
Contraction mapping – Function reducing distance between all points
Gowers norm
Locally convex topological vector space – A vector space with a topology defined by convex open sets
Normed vector space – Vector space on which a distance is defined
Sublinear function – Type of function in linear algebra
Notes
Proofs
↑If [math]\displaystyle{ z \in X }[/math] denotes the zero vector in [math]\displaystyle{ X }[/math] while [math]\displaystyle{ 0 }[/math] denote the zero scalar, then absolute homogeneity implies that [math]\displaystyle{ p(0) = p(0 z) = |0|p(z) = 0 p(z) = 0. }[/math][math]\displaystyle{ \blacksquare }[/math]
↑Suppose [math]\displaystyle{ p : X \to \R }[/math] is a seminorm and let [math]\displaystyle{ x \in X. }[/math] Then absolute homogeneity implies [math]\displaystyle{ p(-x) = p((-1) x) =|-1|p(x) = p(x). }[/math] The triangle inequality now implies [math]\displaystyle{ p(0) = p(x + (- x)) \leq p(x) + p(-x) = p(x) + p(x) = 2 p(x). }[/math] Because [math]\displaystyle{ x }[/math] was an arbitrary vector in [math]\displaystyle{ X, }[/math] it follows that [math]\displaystyle{ p(0) \leq 2 p(0), }[/math] which implies that [math]\displaystyle{ 0 \leq p(0) }[/math] (by subtracting [math]\displaystyle{ p(0) }[/math] from both sides). Thus [math]\displaystyle{ 0 \leq p(0) \leq 2 p(x) }[/math] which implies [math]\displaystyle{ 0 \leq p(x) }[/math] (by multiplying thru by [math]\displaystyle{ 1/2 }[/math]).
↑Let [math]\displaystyle{ x \in X }[/math] and [math]\displaystyle{ k \in p^{-1}(0). }[/math] It remains to show that [math]\displaystyle{ p(x + k) = p(x). }[/math] The triangle inequality implies [math]\displaystyle{ p(x + k) \leq p(x) + p(k) = p(x) + 0 = p(x). }[/math] Since [math]\displaystyle{ p(-k) = 0, }[/math][math]\displaystyle{ p(x) = p(x) - p(-k) \leq p(x - (-k)) = p(x + k), }[/math] as desired. [math]\displaystyle{ \blacksquare }[/math]
References
↑ 1.01.11.21.3Kubrusly 2011, p. 200.
↑Narici & Beckenstein 2011, pp. 120–121.
↑ 3.03.13.23.33.43.53.63.73.83.9Narici & Beckenstein 2011, pp. 116–128.
↑ 4.04.14.24.34.44.54.6Wilansky 2013, pp. 15-21.
↑ 5.05.15.25.3Schaefer & Wolff 1999, p. 40.
↑ 6.06.1Narici & Beckenstein 2011, pp. 120-121.
↑ 7.07.17.27.37.47.57.6Narici & Beckenstein 2011, pp. 177-220.
↑Narici & Beckenstein 2011, pp. 116−128.
↑Narici & Beckenstein 2011, pp. 107-113.
↑Schechter 1996, p. 691.
↑ 11.011.1Narici & Beckenstein 2011, p. 149.
↑ 12.012.112.2Narici & Beckenstein 2011, pp. 149–153.
↑ 13.013.113.2Wilansky 2013, pp. 18-21.
↑Obvious if [math]\displaystyle{ X }[/math] is a real vector space. For the non-trivial direction, assume that [math]\displaystyle{ \operatorname{Re} f \leq p }[/math] on [math]\displaystyle{ X }[/math] and let [math]\displaystyle{ x \in X. }[/math] Let [math]\displaystyle{ r \geq 0 }[/math] and [math]\displaystyle{ t }[/math] be real numbers such that [math]\displaystyle{ f(x) = r e^{i t}. }[/math] Then [math]\displaystyle{ |f(x)|= r = f\left(e^{-it} x\right) = \operatorname{Re}\left(f\left(e^{-it} x\right)\right) \leq p\left(e^{-it} x\right) = p(x). }[/math]
↑Wilansky 2013, p. 20.
↑ 16.016.116.216.316.416.5Wilansky 2013, pp. 21-26.
↑Narici & Beckenstein 2011, pp. 150.
↑Wilansky 2013, pp. 50-51.
↑Narici & Beckenstein 2011, pp. 156-175.
↑ 20.020.1Trèves 2006, pp. 136–149, 195–201, 240–252, 335–390, 420–433.
↑ 21.021.1Narici & Beckenstein 2011, pp. 156–175.
↑Narici & Beckenstein 2011, pp. 149-153.
↑Wilansky 2013, pp. 49-50.
↑Narici & Beckenstein 2011, pp. 115-154.
Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. {3834. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
Bourbaki, Nicolas (1987). Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. 2. Berlin New York: Springer-Verlag. ISBN 978-3-540-42338-6. OCLC 17499190. http://www.numdam.org/item?id=AIF_1950__2__5_0.
Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
Edwards, Robert E. (Jan 1, 1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
Grothendieck, Alexander (January 1, 1973). Topological Vector Spaces. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098. https://archive.org/details/topologicalvecto0000grot.
Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
Khaleelulla, S. M. (July 1, 1982). written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. OCLC 840293704.
Template:Kubrusly The Elements of Operator Theory 2nd Edition 2011
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
Prugovečki, Eduard (1981). Quantum mechanics in Hilbert space (2nd ed.). Academic Press. p. 20. ISBN 0-12-566060-X.
Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
External links
Sublinear functions
The sandwich theorem for sublinear and super linear functionals
v
t
e
Functional analysis (topics)
Topological vector spaces
Asplund
Banach (list)
Banach lattice
Barrelled
Bornological
Brauner
F-space
Fréchet (tame)
Hilbert (Inner product space
Polarization identity)
LF-space
Locally convex (Seminorms/Minkowski functionals)
Mackey
Montel
Nuclear
Normed (norm)
Quasinormed
Reflexive
Riesz
Smith
Stereotype
Strictly convex
Webbed
Topological tensor product (of Hilbert spaces)
Topologies of function spaces
Dual
Dual space (Dual norm)
Operator
Ultraweak
Weak (polar
operator)
Mackey
Strong (polar
operator)
Ultrastrong
Uniform convergence
Linear operators
Adjoint
Bilinear (form
operator
sesquilinear)
(Un)Bounded
Closed
Compact (on Hilbert spaces)
(Dis)Continuous
Densely defined
Fredholm
Hilbert–Schmidt
Functionals (positive)
Normal
Nuclear
Self-adjoint
Strictly singular
Trace class
Transpose
Unitary
Operator theory
Banach algebras
C*-algebras
Spectrum (C*-algebra
radius)
Spectral theory (of ODEs
Spectral theorem)
Polar decomposition
Singular value decomposition
Theorems
Banach–Alaoglu
Banach–Mazur
Banach–Saks
Banach–Schauder (open mapping)
Banach–Steinhaus (Uniform boundedness)
Bessel's inequality
Cauchy–Schwarz inequality
Closed graph
Closed range
Eberlein–Šmulian
Freudenthal spectral
Gelfand–Mazur
Gelfand–Naimark
Goldstine
Hahn–Banach (hyperplane separation)
Kakutani fixed-point
Krein–Milman
Lomonosov's invariant subspace
Mackey–Arens
Mazur's lemma
M. Riesz extension
Riesz representation
Parseval's identity
Schauder fixed-point
Analysis
Abstract Wiener space
Bochner space
Differentiation in Fréchet spaces
Derivatives (Fréchet
Gateaux
functional
holomorphic)
Integrals (Bochner
Dunford
Gelfand–Pettis
regulated
Paley–Wiener
weak)
Functional calculus (Borel
continuous
holomorphic)
Inverse function theorem (Nash–Moser theorem)
Measures (Lebesgue
Projection-valued
Vector)
Weakly measurable function
Types of sets
Absolutely convex
Absorbing
Balanced
Bounded
Convex
Convex cone (subset)
Linear cone (subset)
Radial
Star-shaped
Symmetric
Zonotope
Subsets / set operations
Algebraic interior (core)
Bounding points
Convex hull
Extreme point
Interior
Minkowski addition
Polar
v
t
e
Topological vector spaces (TVSs)
Basic concepts
Banach space
Continuous linear operator
Functionals
Hilbert space
Linear operators
Locally convex space
Homomorphism
Topological vector space
Vector space
Main results
Closed graph theorem
F. Riesz's theorem
Hahn–Banach (hyperplane separation
Vector-Valued Hahn-Banach)
Open mapping (Banach–Schauder) (Bounded inverse)
Uniform boundedness (Banach–Steinhaus)
Maps
Almost open
Bilinear (form
operator) and Sesquilinear forms
Closed
Compact operator
Continuous and Discontinuous Linear maps
Densely defined
Homomorphism
Functionals
Norm
Operator
Seminorm
Sublinear
Transpose
Types of sets
Absolutely convex/disk
Absorbing/Radial
Affine
Balanced/Circled
Banach disks
Bounding points
Bounded
Complemented subspace
Convex
Convex cone (subset)
Linear cone (subset)
Extreme point
Pre-compact/Totally bounded
Radial
Radially convex/Star-shaped
Symmetric
Set operations
Affine hull
(Relative) Algebraic interior (core)
Convex hull
Linear span
Minkowski addition
Polar
(Quasi) Relative interior
Types of TVSs
Asplund
B-complete/Ptak
Banach
(Countably) Barrelled
(Ultra-) Bornological
Brauner
Complete
(DF)-space
Distinguished
F-space
Fréchet (tame Fréchet)
Grothendieck
Hilbert
Infrabarreled
Interpolation space
LB-space
LF-space
Locally convex space
Mackey
(Pseudo)Metrizable
Montel
Quasibarrelled
Quasi-complete
Quasinormed
(Polynomially
Semi-) Reflexive
Riesz
Schwartz
Semi-complete
Smith
Stereotype
(B
Strictly
Uniformly convex
(Quasi-) Ultrabarrelled
Uniformly smooth
Webbed
With the Approximation property
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Seminorm. Read more