Monopole (Mathematics)

From Handwiki

In mathematics, a monopole is a connection over a principal bundle G with a section of the associated adjoint bundle.

Physical interpretation

Physically, the section can be interpreted as a Higgs field, where the connection and Higgs field should[why?] satisfy the Bogomolny equations and be of finite action.

See also

  • Nahm equations
  • Instanton
  • Magnetic monopole
  • Yang–Mills theory

References

  • Hitchin, Nigel (1983). "On the construction of monopoles". Communications in Mathematical Physics 89 (2): 145–190. doi:10.1007/BF01211826. Bibcode: 1983CMaPh..89..145H. 
  • Donaldson, Simon (1984). "Nahm's equations and the classification of monopoles". Communications in Mathematical Physics 96 (3): 387–407. doi:10.1007/BF01214583. Bibcode: 1984CMaPh..96..387D. http://projecteuclid.org/euclid.cmp/1103941858. 
  • Atiyah, Michael; Hitchin, N. J. (1988). The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton, NJ: Princeton University Press. ISBN 0-691-08480-7. 




Retrieved from "https://handwiki.org/wiki/index.php?title=Monopole_(mathematics)&oldid=3364549"

Categories: [Differential geometry] [Mathematical physics]


Download as ZWI file | Last modified: 07/18/2024 10:59:48 | 14 views
☰ Source: https://handwiki.org/wiki/Monopole_(mathematics) | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]