The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N−), the nitrides (N3−) and the nitridohydrides (N3−•H−).
In addition to solid state imides, molecular imides are also known in dilute gases, where their spectrum can be studied.
When covalently bound to a metal, an imide ligand produces a transition metal imido complex.
When the hydrogen of the imide group is substituted by an organic group, an organoimide results. Complexes of actinide and rare earth elements with organoimides are known.[1]
Contents
1Properties
2Structure
3Formation
4Hydrogen storage
5List
5.1Ionic
5.2Molecular
6References
Properties
Lithium imide undergoes a phase transition at 87 °C where it goes from an ordered to a more symmetric disordered state.[2]
Structure
Many imides have a cubic rock salt structure, with the metal and nitrogen occupying the main positions. The position of the hydrogen atom is hard to determine, but is disordered.
Many of the heavy metal simple imide molecules are linear. This is due to the filled 2p orbital of nitrogen donating electrons to an empty d orbital on the metal.[3]
Formation
Heating lithium amide with lithium hydride yields lithium imide and hydrogen gas. This reaction takes place as released ammonia reacts with lithium hydride.[2]
Heating magnesium amide to about 400 °C yields magnesium imide with the loss of ammonia. Magnesium imide itself decomposes if heated between 455 and 490 °C.[4]
Beryllium imide forms from beryllium amide when heated to 230 °C in a vacuum.[5]
When strontium metal is heated with ammonia at 750 °C, the dark yellow strontium imide forms.[6]
When barium vapour is heated with ammonia in an electrical discharge, the gaseous, molecular BaNH is formed.[7] Molecules ScNH, YNH, and LaNH are also known.[8][9]
Hydrogen storage
Inorganic imides are of interest because they can reversibly store hydrogen, which may be important for the hydrogen economy. For example, calcium imide can store 2.1% mass of hydrogen. Li2Ca(NH)2 reversibly stores hydrogen and release it at temperatures between 140 and 206 °C. It can reversibly hold 2.3% hydrogen.[10] When hydrogen is added to the imide, amides and hydrides are produced. When imides are heated, they can yield hydridonitrides or nitrides, but these may not easily reabsorb hydrogen.
List
Ionic
name
formula
structure
space group
unit cell
references
Lithium imide
Li2NH
cubic
Fm3m
a=5.0742
[2]
Beryllium imide
BeNH
[5]
Magnesium imide
MgNH
hexagonal
P6/m
a = 11.567 Å c = 3.683Å Z=12
[4]
Lithium magnesium imide
Li2Mg(NH)2
[10]
Si2N2(NH)
[11]
K2Si(NH)3
amourphous
[12]
K2Si2(NH)5
amourphous
[12]
K2Si3(NH)7
amourphous
[12]
potassium imido nitrido silicate
K3Si6N5(NH)6
cubic
P4332
a = 10.789
[11]
Calcium imide
CaNH
hexagonal
Fm3m
[10]
Lithium calcium imide
Li2Ca(NH)2
hexagonal
[10]
Magnesium calcium diimide
MgCa(NH)2
cubic
[13]
Lithium calcium magnesium imide
Li4CaMg(NH)4
[10]
Strontium imide
SrNH
orthorhombic
Pmna
a =7.5770 b =3.92260 c =5.69652 Z=4
[6]
Tin amide imide
Sn(NH2)2NH
[14][15]
Barium imide
BaNH
tetragonal
I4/mmm
a=4.062 c=6.072 Z=2
[16]
Lanthanum imide
La2(NH)3
rock salt
a=5.32
[17]
Cerium imide
CeNH
[18]
Ytterbium imide
YbNH
cubic
a=4.85
[19]
NH4[Hg3(NH)2](NO3)3
cubic
P4132
a = 10.304, Z = 4
[20]
Thorium nitride imide
Th2N2(NH)
hexagonal
P3m1
a = 3.886 c = 6.185 Å
[21]
Molecular
name
formula
structure
symmetry
CAS
references
B2(NH)3
polymer
[22]
Nitroxyl
HNO
bent
14332-28-6
Al(NH2)(NH)
polymer
[22]
silicon dimide
Si(NH)2
thionitrosyl hydride
HNS
bent
14616-59-2
[23]
sulfur diimide
S(NH)2
Heptasulfur imide
S7NH
293-42-5
[24]
1,2,3,4,5,7,6,8-Hexathiadiazocane
1,3-Hexasulfurdiimide
H2N2S6
1003-75-4
1,2,3,4,6,7,5,8-Hexathiadiazocane
1,4-Hexasulfurdiimide
H2N2S6
1003-76-5
1,2,3,5,6,7,4,8-Hexathiadiazocane
1,5-Hexasulfurdiimide
H2N2S6
1,2,3,5,7,4,6,8-Pentathiatriazocane
H3N3S5
638-50-6
ScNH
[8]
Ga2(NH)3
polymer
[22]
YNH
[8]
BaNH
linear
[3]
LaNH
linear
C∞v
[9][25]
CeNH
linear
C∞v
[25]
Uranimine nitride
N≡U═N−H
[26]
Uranimine dihydride
HN═UH2
[26]
Molecular imines of other actinides called neptunimine and plutonimine have been postulated to exist in the gas phase or noble gas matrix.[27]
References
↑Schädle, Dorothea; Anwander, Reiner (2019). "Rare-earth metal and actinide organoimide chemistry". Chemical Society Reviews48 (24): 5752–5805. doi:10.1039/c8cs00932e. PMID 31720564.
↑ 2.02.12.2Lowton, Rebecca L. (1999). Structural and thermogravimetric studies of alkali metal amides and imides (PhD thesis). Oxford University, UK.
↑ 3.03.1Janczyk, Alexandra; Lichtenberger, Dennis L.; Ziurys, Lucy M. (February 2006). "Competition between Metal-Amido and Metal-Imido Chemistries in the Alkaline Earth Series: An Experimental and Theoretical Study of BaNH" (in en). Journal of the American Chemical Society128 (4): 1109–1118. doi:10.1021/ja053473k. ISSN 0002-7863. PMID 16433526. https://pubs.acs.org/doi/10.1021/ja053473k.
↑ 4.04.1Dolci, Francesco; Napolitano, Emilio; Weidner, Eveline; Enzo, Stefano; Moretto, Pietro; Brunelli, Michela; Hansen, Thomas; Fichtner, Maximilian et al. (7 February 2011). "Magnesium Imide: Synthesis and Structure Determination of an Unconventional Alkaline Earth Imide from Decomposition of Magnesium Amide". Inorganic Chemistry50 (3): 1116–1122. doi:10.1021/ic1023778. PMID 21190329. https://d1wqtxts1xzle7.cloudfront.net/43709303/IC_11_Dolci.pdf?1457950512=&response-content-disposition=inline;+filename=Magnesium_Imide_Synthesis_and_Structure.pdf.
↑ 5.05.1Jacobs, Herbert; Juza, Robert (November 1969). "Darstellung und Eigenschaften von Berylliumamid und -imid" (in de). Zeitschrift für anorganische und allgemeine Chemie370 (5–6): 248–253. doi:10.1002/zaac.19693700507. ISSN 0044-2313. http://doi.wiley.com/10.1002/zaac.19693700507.
↑ 6.06.1Schultz‐Coulon, Verena; Irran, Elisabeth; Putz, Bernd; Schnick, Wolfgang (1999). "β-SrNH und β-SrND – Synthese und Kristallstrukturbestimmung mittels Röntgen- und Neutronenbeugung an Pulvern". Zeitschrift für anorganische und allgemeine Chemie625 (7): 1086–1092. doi:3.0.CO;2-B">10.1002/(SICI)1521-3749(199907)625:7<1086::AID-ZAAC1086>3.0.CO;2-B.
↑Janczyk, Alexandra; Lichtenberger, Dennis L.; Ziurys, Lucy M. (February 2006). "Competition between Metal-Amido and Metal-Imido Chemistries in the Alkaline Earth Series: An Experimental and Theoretical Study of BaNH". Journal of the American Chemical Society128 (4): 1109–1118. doi:10.1021/ja053473k. PMID 16433526.
↑ 8.08.18.2Bhattacharyya, Soumen; Harrison, James F. (September 2020). "Electronic structure and bonding of the ScNH and YNH molecules". Chemical Physics Letters754: 137735. doi:10.1016/j.cplett.2020.137735. Bibcode: 2020CPL...75437735B.
↑ 9.09.1Bhattacharyya, Soumen; Harrison, J. F. (1 September 2019). "Theoretical study of the electronic structure and bonding of LaNH". Chemical Physics Letters730: 551–556. doi:10.1016/j.cplett.2019.06.042. Bibcode: 2019CPL...730..551B.
↑ 10.010.110.210.310.4Verbraeken, Maarten Christiaan (February 2009). Doped Alkaline Earth (nitride) Hydrides (Thesis). University of St Andrews. p. 19. hdl:10023/714.
↑ 11.011.1Peters, D.; Paulus, E. F.; Jacobs, H. (1990). "Darstellung und Kristallstruktur eines Kaliumimidonitridosilicats, K3Si6N5(NH)6" (in de). Zeitschrift für anorganische und allgemeine Chemie584 (1): 129–137. doi:10.1002/zaac.19905840112. ISSN 0044-2313. http://doi.wiley.com/10.1002/zaac.19905840112.
↑ 12.012.112.2Ali, S. I. (December 1970). "Reactions of Silicon Tetrabromide and -iodide with Potassium Amide in liquid ammonia" (in de). Zeitschrift für anorganische und allgemeine Chemie379 (1): 68–71. doi:10.1002/zaac.19703790112. ISSN 0044-2313. http://doi.wiley.com/10.1002/zaac.19703790112.
↑Liu, Yongfeng; Liu, Tao; Xiong, Zhitao; Hu, Jianjiang; Wu, Guotao; Chen, Ping; Wee, Andrew T. S.; Yang, Ping et al. (November 2006). "Synthesis and Structural Characterization of a New Alkaline Earth Imide: MgCa(NH)2". European Journal of Inorganic Chemistry2006 (21): 4368–4373. doi:10.1002/ejic.200600492.
↑Watney, Nicholas S. P.; Gál, Zoltán A.; Webster, Matthew D. S.; Clarke, Simon J. (2005). "The first ternary tin(ii) nitride: NaSnN" (in en). Chemical Communications (33): 4190–2. doi:10.1039/b505208d. ISSN 1359-7345. PMID 16100599. http://xlink.rsc.org/?DOI=b505208d.
↑Maya, Leon (May 1992). "Preparation of tin nitride via an amide-imide intermediate" (in en). Inorganic Chemistry31 (10): 1958–1960. doi:10.1021/ic00036a044. ISSN 0020-1669. https://pubs.acs.org/doi/abs/10.1021/ic00036a044.
↑Wegner, B.; Essmann, R.; Jacobs, H.; Fischer, P. (December 1990). "Synthesis of barium imide from the elements and orientational disorder of anions in BaND studied by neutron diffraction from 8 to 294 K" (in en). Journal of the Less Common Metals167 (1): 81–90. doi:10.1016/0022-5088(90)90291-Q.
↑Jacobs, H; Gieger, B; Hadenfeldt, C (March 1979). "Über das system kalium/lanthan/ammoniak" (in de). Journal of the Less Common Metals64 (1): 91–99. doi:10.1016/0022-5088(79)90136-X. https://linkinghub.elsevier.com/retrieve/pii/002250887990136X.
↑Imamura, Hayao; Kawasoe, Masahiro; Imayoshi, Kyouya; Sakata, Yoshihisa (2015). "Preparation and Some Properties of Nanostructural Rare Earth Nitrides by Using the Reaction of Hydrides with Ammonia". International Journal of Theoretical and Applied Nanotechnology3: 1–8. doi:10.11159/ijtan.2015.001. http://ijtan.avestia.com/2015/001.html.
↑Imamura, Hayao (2000), "Chapter 182 The metals and alloys (prepared utilizing liquid ammonia solutions) in catalysis II" (in en), The Role of Rare Earths in Catalysis, Handbook on the Physics and Chemistry of Rare Earths, 29, Elsevier, pp. 45–74, doi:10.1016/s0168-1273(00)29005-3, ISBN 978-0-444-50472-2, https://linkinghub.elsevier.com/retrieve/pii/S0168127300290053, retrieved 2020-11-10
↑Nockemann, Peter; Meyer, Gerd (2002). "Bildung von NH4[Hg3(NH)2](NO3)3 und Umwandlung in [Hg2N](NO3)". Zeitschrift für Anorganische und Allgemeine Chemie628 (12): 2709–2714. doi:3.0.CO;2-P">10.1002/1521-3749(200212)628:12<2709::AID-ZAAC2709>3.0.CO;2-P.
↑Silva, G. W. Chinthaka; Yeamans, Charles B.; Weck, Philppe F.; Hunn, John D.; Cerefice, Gary S.; Sattelberger, Alfred P.; Czerwinski, Ken R. (2012-03-05). "Synthesis and Characterization of Th 2 N 2 (NH) Isomorphous to Th 2 N 3" (in en). Inorganic Chemistry51 (5): 3332–3340. doi:10.1021/ic300025b. ISSN 0020-1669. PMID 22360445. https://pubs.acs.org/doi/10.1021/ic300025b.
↑ 22.022.122.2Janik, Jerzy F.; Wells, Richard L. (January 1996). "Gallium Imide, {Ga(NH) 3/2 } n , a New Polymeric Precursor for Gallium Nitride Powders" (in en). Chemistry of Materials8 (12): 2708–2711. doi:10.1021/cm960419h. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/cm960419h.
↑Nguyen, Minh Tho; Vanquickenborne, L.G.; Plisnier, Michel; Flammang, Robert (January 1993). "A mass spectrometric and ab initio molecular orbital characterization of thionitrosyl hydride (H-N=S)" (in en). Molecular Physics78 (1): 111–119. doi:10.1080/00268979300100111. ISSN 0026-8976. Bibcode: 1993MolPh..78..111N. http://www.tandfonline.com/doi/abs/10.1080/00268979300100111.
↑Mendelsohn, M.H.; Jolly, W.L. (January 1973). "Reactions of the heptasulfur imide anion". Journal of Inorganic and Nuclear Chemistry35 (1): 95–99. doi:10.1016/0022-1902(73)80614-1. https://escholarship.org/uc/item/97d7b60v.
↑ 25.025.1Zhang, Yuchen; Nyambo, Silver; Yang, Dong-Sheng (2018-12-21). "Mass-analyzed threshold ionization spectroscopy of lanthanide imide LnNH (Ln = La and Ce) radicals from N–H bond activation of ammonia" (in en). The Journal of Chemical Physics149 (23): 234301. doi:10.1063/1.5064597. ISSN 0021-9606. PMID 30579310. Bibcode: 2018JChPh.149w4301Z. http://aip.scitation.org/doi/10.1063/1.5064597.
↑ 26.026.1Wang, Xuefeng; Andrews, Lester; Vlaisavljevich, Bess; Gagliardi, Laura (2011-04-18). "Combined Triple and Double Bonds to Uranium: The N≡U═N−H Uranimine Nitride Molecule Prepared in Solid Argon" (in en). Inorganic Chemistry50 (8): 3826–3831. doi:10.1021/ic2003244. ISSN 0020-1669. PMID 21405096. https://pubs.acs.org/doi/10.1021/ic2003244.
↑Li, Peng; Niu, Wenxia; Gao, Tao (2015-11-25). "Systematic analysis of structural and spectroscopic properties of neptunimine (HN=NpH2) and plutonimine (HN=PuH2)" (in en). Journal of Molecular Modeling21 (12): 316. doi:10.1007/s00894-015-2856-1. ISSN 0948-5023. PMID 26608606. https://doi.org/10.1007/s00894-015-2856-1.
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Inorganic imide. Read more