Dual (Category Theory)

From Handwiki

Short description: Correspondence between properties of a category and its opposite


In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about C, then its dual statement is true about Cop. Also, if a statement is false about C, then its dual has to be false about Cop.

Given a concrete category C, it is often the case that the opposite category Cop per se is abstract. Cop need not be a category that arises from mathematical practice. In this case, another category D is also termed to be in duality with C if D and Cop are equivalent as categories.

In the case when C and its opposite Cop are equivalent, such a category is self-dual.[1]

Formal definition

We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms.

Let σ be any statement in this language. We form the dual σop as follows:

  1. Interchange each occurrence of "source" in σ with "target".
  2. Interchange the order of composing morphisms. That is, replace each occurrence of [math]\displaystyle{ g \circ f }[/math] with [math]\displaystyle{ f \circ g }[/math]

Informally, these conditions state that the dual of a statement is formed by reversing arrows and compositions.

Duality is the observation that σ is true for some category C if and only if σop is true for Cop.[2][3]

Examples

  • A morphism [math]\displaystyle{ f\colon A \to B }[/math] is a monomorphism if [math]\displaystyle{ f \circ g = f \circ h }[/math] implies [math]\displaystyle{ g=h }[/math]. Performing the dual operation, we get the statement that [math]\displaystyle{ g \circ f = h \circ f }[/math] implies [math]\displaystyle{ g=h. }[/math] For a morphism [math]\displaystyle{ f\colon B \to A }[/math], this is precisely what it means for f to be an epimorphism. In short, the property of being a monomorphism is dual to the property of being an epimorphism.

Applying duality, this means that a morphism in some category C is a monomorphism if and only if the reverse morphism in the opposite category Cop is an epimorphism.

  • An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤new by
xnew y if and only if yx.

This example on orders is a special case, since partial orders correspond to a certain kind of category in which Hom(A,B) can have at most one element. In applications to logic, this then looks like a very general description of negation (that is, proofs run in the opposite direction). For example, if we take the opposite of a lattice, we will find that meets and joins have their roles interchanged. This is an abstract form of De Morgan's laws, or of duality applied to lattices.

  • Limits and colimits are dual notions.
  • Fibrations and cofibrations are examples of dual notions in algebraic topology and homotopy theory. In this context, the duality is often called Eckmann–Hilton duality.

See also

  • Adjoint functor
  • Dual object
  • Duality (mathematics)
  • Opposite category
  • Pulation square

References

  1. Jiří Adámek; J. Rosicky (1994). Locally Presentable and Accessible Categories. Cambridge University Press. p. 62. ISBN 978-0-521-42261-1. https://books.google.com/books?id=iXh6rOd7of0C&pg=PA62. 
  2. Mac Lane 1978, p. 33.
  3. Awodey 2010, p. 53-55.
  • Hazewinkel, Michiel, ed. (2001), "Dual category", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=p/d034090 
  • Hazewinkel, Michiel, ed. (2001), "Duality principle", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=p/d034130 
  • Hazewinkel, Michiel, ed. (2001), "Duality", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=p/d034120 
  • Mac Lane, Saunders (1978). Categories for the Working Mathematician (Second ed.). New York, NY: Springer New York. pp. 33. ISBN 1441931236. OCLC 851741862. 
  • Awodey, Steve (2010). Category theory (2nd ed.). Oxford: Oxford University Press. pp. 53–55. ISBN 978-0199237180. OCLC 740446073. 



Retrieved from "https://handwiki.org/wiki/index.php?title=Dual_(category_theory)&oldid=2643997"

Categories: [Category theory] [Duality theories]


Download as ZWI file | Last modified: 05/20/2024 12:52:07 | 10 views
☰ Source: https://handwiki.org/wiki/Dual_(category_theory) | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]