In mathematics, the Fictitious domain method is a method to find the solution of a partial differential equations on a complicated domain [math]\displaystyle{ D }[/math], by substituting a given problem
posed on a domain [math]\displaystyle{ D }[/math], with a new problem posed on a simple domain [math]\displaystyle{ \Omega }[/math] containing [math]\displaystyle{ D }[/math].
General formulation
Assume in some area [math]\displaystyle{ D \subset \mathbb{R}^n }[/math] we want to find solution [math]\displaystyle{ u(x) }[/math] of the equation:
- [math]\displaystyle{
Lu = - \phi(x), x = (x_1, x_2, \dots , x_n) \in D
}[/math]
with boundary conditions:
- [math]\displaystyle{
lu = g(x), x \in \partial D
}[/math]
The basic idea of fictitious domains method is to substitute a given problem
posed on a domain [math]\displaystyle{ D }[/math], with a new problem posed on a simple shaped domain [math]\displaystyle{ \Omega }[/math] containing [math]\displaystyle{ D }[/math] ([math]\displaystyle{ D \subset \Omega }[/math]). For example, we can choose n-dimensional parallelotope as [math]\displaystyle{ \Omega }[/math].
Problem in the extended domain [math]\displaystyle{ \Omega }[/math] for the new solution [math]\displaystyle{ u_{\epsilon}(x) }[/math]:
- [math]\displaystyle{
L_\epsilon u_\epsilon = - \phi^\epsilon(x), x = (x_1, x_2, \dots , x_n) \in \Omega
}[/math]
- [math]\displaystyle{
l_\epsilon u_\epsilon = g^\epsilon(x), x \in \partial \Omega
}[/math]
It is necessary to pose the problem in the extended area so that the following condition is fulfilled:
- [math]\displaystyle{
u_\epsilon (x) \xrightarrow[\epsilon \rightarrow 0]{ } u(x), x \in D
}[/math]
Simple example, 1-dimensional problem
- [math]\displaystyle{
\frac{d^2u}{dx^2} = -2, \quad 0 \lt x \lt 1 \quad (1)
}[/math]
- [math]\displaystyle{
u(0) = 0, u(1) = 0
}[/math]
Prolongation by leading coefficients
[math]\displaystyle{ u_\epsilon(x) }[/math] solution of problem:
- [math]\displaystyle{
\frac{d}{dx}k^\epsilon(x)\frac{du_\epsilon}{dx} = - \phi^{\epsilon}(x), 0 \lt x \lt 2 \quad (2)
}[/math]
Discontinuous coefficient [math]\displaystyle{ k^{\epsilon}(x) }[/math] and right part of equation previous equation we obtain from expressions:
- [math]\displaystyle{
k^\epsilon (x)=\begin{cases} 1, & 0 \lt x \lt 1 \\ \frac{1}{\epsilon^2}, & 1 \lt x \lt 2
\end{cases}
}[/math]
- [math]\displaystyle{
\phi^\epsilon (x)=\begin{cases} 2, & 0 \lt x \lt 1 \\ 2c_0, & 1 \lt x \lt 2
\end{cases}\quad (3)
}[/math]
Boundary conditions:
- [math]\displaystyle{
u_\epsilon(0) = 0, u_\epsilon(2) = 0
}[/math]
Connection conditions in the point [math]\displaystyle{ x = 1 }[/math]:
- [math]\displaystyle{
[u_\epsilon] = 0,\ \left[k^\epsilon(x)\frac{du_\epsilon}{dx}\right] = 0
}[/math]
where [math]\displaystyle{ [ \cdot ] }[/math] means:
- [math]\displaystyle{
[p(x)] = p(x + 0) - p(x - 0)
}[/math]
Equation (1) has analytical solution therefore we can easily obtain error:
- [math]\displaystyle{
u(x) - u_\epsilon(x) = O(\epsilon^2), \quad 0 \lt x \lt 1
}[/math]
Prolongation by lower-order coefficients
[math]\displaystyle{ u_\epsilon(x) }[/math] solution of problem:
- [math]\displaystyle{
\frac{d^2u_\epsilon}{dx^2} - c^\epsilon(x)u_\epsilon = - \phi^\epsilon(x), \quad 0 \lt x \lt 2 \quad (4)
}[/math]
Where [math]\displaystyle{ \phi^{\epsilon}(x) }[/math] we take the same as in (3), and expression for [math]\displaystyle{ c^{\epsilon}(x) }[/math]
- [math]\displaystyle{
c^\epsilon(x)=\begin{cases}
0, & 0 \lt x \lt 1 \\
\frac{1}{\epsilon^2}, & 1 \lt x \lt 2.
\end{cases}
}[/math]
Boundary conditions for equation (4) same as for (2).
Connection conditions in the point [math]\displaystyle{ x = 1 }[/math]:
- [math]\displaystyle{
[u_\epsilon(0)] = 0,\ \left[\frac{du_\epsilon}{dx}\right] = 0
}[/math]
Error:
- [math]\displaystyle{
u(x) - u_\epsilon(x) = O(\epsilon), \quad 0 \lt x \lt 1
}[/math]
Literature
- P.N. Vabishchevich, The Method of Fictitious Domains in Problems of Mathematical Physics, Izdatelstvo Moskovskogo Universiteta, Moskva, 1991.
- Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Preprint CC SA USSR, 68, 1979.
- Bugrov A.N., Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Mathematical model of fluid flow, Novosibirsk, 1978, p. 79–90
Numerical partial differential equations by method |
|---|
| Finite difference | | Parabolic |
- Forward-time central-space (FTCS)
- Crank–Nicolson
|
|---|
| Hyperbolic |
- Lax–Friedrichs
- Lax–Wendroff
- MacCormack
- Upwind
- Method of characteristics
|
|---|
| Others |
- Alternating direction-implicit (ADI)
- Finite-difference time-domain (FDTD)
|
|---|
|
|---|
| Finite volume |
- Godunov
- High-resolution
- Monotonic upstream-centered (MUSCL)
- Advection upstream-splitting (AUSM)
- Riemann solver
- essentially non-oscillatory (ENO)
- weighted essentially non-oscillatory (WENO)
|
|---|
| Finite element |
- hp-FEM
- Extended (XFEM)
- Discontinuous Galerkin (DG)
- Spectral element (SEM)
- Mortar
- Gradient discretisation (GDM)
- Loubignac iteration
- Smoothed (S-FEM)
|
|---|
| Meshless/Meshfree |
- Smoothed-particle hydrodynamics (SPH)
- Moving particle semi-implicit method (MPS)
- Material point method (MPM)
- Particle-in-cell (PIC)
|
|---|
| Domain decomposition |
- Schur complement
- Fictitious domain
- Schwarz alternating
- additive
- abstract additive
- Neumann–Dirichlet
- Neumann–Neumann
- Poincaré–Steklov operator
- Balancing (BDD)
- Balancing by constraints (BDDC)
- Tearing and interconnect (FETI)
- FETI-DP
|
|---|
| Others |
- Spectral
- Pseudospectral (DVR)
- Method of lines
- Multigrid
- Collocation
- Level-set
- Boundary element
- Immersed boundary
- Analytic element
- Particle-in-cell
- Isogeometric analysis
- Infinite difference method
- Infinite element method
- Galerkin method
- Validated numerics
- Computer-assisted proof
|
|---|
| This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. Please help improve this article. Unsourced material may be removed in future. Find sources: "Fictitious domain method" – news · newspapers · books · scholar · JSTOR (2021) (Learn how and when to remove this template message) |
 | Original source: https://en.wikipedia.org/wiki/Fictitious domain method. Read more |