A carbon dioxide sensor or CO2 sensor is an instrument for the measurement of carbon dioxide gas. The most common principles for CO2 sensors are infrared gas sensors (NDIR) and chemical gas sensors. Measuring carbon dioxide is important in monitoring indoor air quality, the function of the lungs in the form of a capnograph device, and many industrial processes.
Nondispersive infrared (NDIR) CO2 sensors
CO
2 concentration meter using a nondispersive infrared sensor
- Main page: Physics:Nondispersive infrared sensor
NDIR sensors are spectroscopic sensors to detect CO2 in a gaseous environment by its characteristic absorption. The key components are an infrared source, a light tube, an interference (wavelength) filter, and an infrared detector. The gas is pumped or diffuses into the light tube, and the electronics measure the absorption of the characteristic wavelength of light. NDIR sensors are most often used for measuring carbon dioxide.[1] The best of these have sensitivities of 20–50 PPM.[1] Typical NDIR sensors cost in the (US) $100 to $1000 range.
NDIR CO2 sensors are also used for dissolved CO2 for applications such as beverage carbonation, pharmaceutical fermentation and CO2 sequestration applications. In this case they are mated to an ATR (attenuated total reflection) optic and measure the gas in situ. New developments include using microelectromechanical systems (MEMS) IR sources to bring down the costs of this sensor and to create smaller devices (for example for use in air conditioning applications).[2]
Another method (Henry's Law) also can be used to measure the amount of dissolved CO2 in a liquid, if the amount of foreign gases is insignificant.
Photoacoustic sensors
CO2 can be measured using photoacoustic spectroscopy. Concentration of CO2 can be measured by subjecting a sample to pulses of electromagnetic energy (such as from a distributed feedback laser[3]) that is tuned specifically to the absorption wavelength of CO2. With each pulse of energy, the CO2 molecules within the sample will absorb and generate pressure waves via the photoacoustic effect. These pressure waves are then detected with an acoustic detector and converted to a usable CO2 reading through a computer or microprocessor.[4]
Chemical CO2 sensors
Chemical CO2 gas sensors with sensitive layers based on polymer- or heteropolysiloxane have the principal advantage of very low energy consumption, and that they can be reduced in size to fit into microelectronic-based systems. On the downside, short and long term drift effects, as well as a rather low overall lifetime, are major obstacles when compared with the NDIR measurement principle.[5] Most CO2 sensors are fully calibrated prior to shipping from the factory. Over time, the zero point of the sensor needs to be calibrated to maintain the long term stability of the sensor.[6]
Estimated CO2 sensor
For indoor environments such as offices or gyms where the principal source of CO2 is human respiration, rescaling some easier-to-measure quantities such as volatile organic compound (VOC) and hydrogen gas (H2) concentrations provides a good-enough estimator of the real CO2 concentration for ventilation and occupancy purposes. Furthermore, inasmuch as ventilation is a factor in the spread of respiratory viruses,[7] C02 levels are a rough metric for COVID-19 risk; the worse the ventilation, the better for viruses and vice versa.[8][9] Sensors for these substances can be made using cheap (~$20) Microelectromechanical systems (MEMS) metal oxide semiconductor (MOS) technology. The reading they generate is called estimated CO2 (eCO2)[10] or CO2 equivalent (CO2eq).[11] Although the readings tend to be good enough in the long run, introducing non-respiration sources of VOC or CO2, such as peeling fruits or using perfume, will undermine their reliability. H2-based sensors are less susceptible as they are more specific to human breathing, although the very health conditions the hydrogen breath test is set to diagnose will also disrupt them.[11]
Applications
- Examples:
- Modified atmospheres
- Indoor air quality
- Stowaway detection
- Cellar and gas stores
- Marine vessels
- Greenhouses
- Landfill gas
- Confined spaces
- Aerospace
- Healthcare
- Horticulture
- Transportation
- Cryogenics
- Ventilation management
- Mining
- Rebreathers (SCUBA)
- Decaffeination
- For indoor human occupancy counting[12][13]
- For HVAC applications, CO2 sensors can be used to monitor the quality of air and the tailored need for fresh air, respectively. Measuring CO2 levels indirectly determines how many people are in a room, and ventilation can be adjusted accordingly. See demand controlled ventilation (DCV).[14]
See also
- Exhaust gas analyzer
- Oxygen sensor
- Gas detector
- Colorimetric capnography
References
- ↑ 1.0 1.1 Carbonate Based CO2 Sensors with High Performance, Th. Lang, H.-D. Wiemhöfer and W. Göpel, Conf.Proc.Eurosensors IX, Stockholm (S) (1995); Sensors and Actuators B, 34, 1996, 383–387.
- ↑ Vincent, T.A.; Gardner, J.W. (November 2016). "A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels". Sensors and Actuators B: Chemical 236: 954–964. doi:10.1016/j.snb.2016.04.016. https://www.researchgate.net/publication/301241843.
- ↑ Zakaria, Ryadh (March 2010). NDIR INSTRUMENTATION DESIGN FOR CO2 GAS SENSING (PhD). pp. 35–36.
- ↑ AG, Infineon Technologies. "CO
2 Sensors - Infineon Technologies". https://www.infineon.com/cms/en/product/sensor/co2-sensors/.CO
2+Sensors+-+Infineon+Technologies&rft.atitle=&rft.aulast=AG&rft.aufirst=Infineon+Technologies&rft.au=AG, Infineon+Technologies&rft_id=https://www.infineon.com/cms/en/product/sensor/co2-sensors/&rfr_id=info:sid/en.wikibooks.org:Engineering:Carbon_dioxide_sensor">
- ↑ Reliable CO2 Sensors Based with Silicon-based Polymers on Quartz Microbalance Transducers, R. Zhou, S. Vaihinger, K.E. Geckeler, and W. Göpel, Conf.Proc.Eurosensors VII, Budapest (H) (1993); Sensors and Actuators B, 18–19, 1994, 415–420.
- ↑ "CO2 Auto-Calibration Guide". http://sstsensing.com/sites/default/files/AN0117_4_CO2SensorAutoCalibrationNote.pdf.
- ↑ Moriyama, Miyu; Hugentobler, Walter J.; Iwasaki, Akiko (29 September 2020). "Seasonality of Respiratory Viral Infections". Annual Review of Virology 7 (1): 83–101. doi:10.1146/annurev-virology-012420-022445. https://www.annualreviews.org/doi/10.1146/annurev-virology-012420-022445.
- ↑ Peng, Zhe; Jimenez, Jose L. (11 May 2021). "Exhaled CO 2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities". Environmental Science & Technology Letters 8 (5): 392–397. doi:10.1021/acs.estlett.1c00183. https://pubs.acs.org/doi/10.1021/acs.estlett.1c00183.
- ↑ https://www.sciencedaily.com/releases/2021/04/210407143809.html
- ↑ Rüffer, D; Hoehne, F; Bühler, J (31 March 2018). "New Digital Metal-Oxide (MOx) Sensor Platform.". Sensors (Basel, Switzerland) 18 (4): 1052. doi:10.3390/s18041052. PMID 29614746. Bibcode: 2018Senso..18.1052..
- ↑ 11.0 11.1 "MOS gas sensor technology for demand controlled ventilation". Proceedings of the 4th International Symposium on Building and Ductwork Air Tightness and 30th AIVC Conference on Trends in High Performance Buildings and the Role of Ventilation (Berlin). 2009. https://www.aivc.org/sites/default/files/members_area/medias/pdf/Conf/2009/AIVC_Herberger_fullpaper_engl.pdf.
- ↑ Arief-Ang, I.B.; Hamilton, M.; Salim, F. (2018-06-01). "RUP: Large Room Utilisation Prediction with carbon dioxide sensor". Pervasive and Mobile Computing 46: 49–72. doi:10.1016/j.pmcj.2018.03.001. ISSN 1873-1589.
- ↑ Arief-Ang, I.B.; Salim, F.D.; Hamilton, M. (2018-04-14). Data Mining. Springer, Singapore. pp. 125–143. doi:10.1007/978-981-13-0292-3_8. ISBN 978-981-13-0291-6.
- ↑ KMC Controls. (2013). Demand Control Ventilation Benefits for Your Building. Retrieved 25 March 2013, from http://www.kmccontrols.com/docs/DCV_Benefits_White_Paper_KMC_RevB.pdf
Heating, ventilation, and air conditioning |
|---|
| Fundamental concepts |
- Air changes per hour
- Bake-out
- Building envelope
- Convection
- Dilution
- Domestic energy consumption
- Enthalpy
- Fluid dynamics
- Gas compressor
- Heat pump and refrigeration cycle
- Heat transfer
- Humidity
- Infiltration
- Latent heat
- Noise control
- Outgassing
- Particulates
- Psychrometrics
- Sensible heat
- Stack effect
- Thermal comfort
- Thermal destratification
- Thermal mass
- Thermodynamics
- Vapour pressure of water
|
|---|
| Technology |
- Absorption refrigerator
- Air barrier
- Air conditioning
- Antifreeze
- Automobile air conditioning
- Autonomous building
- Building insulation materials
- Central heating
- Central solar heating
- Chilled beam
- Chilled water
- Constant air volume (CAV)
- Coolant
- Dedicated outdoor air system (DOAS)
- Deep water source cooling
- Demand-controlled ventilation (DCV)
- Displacement ventilation
- District cooling
- District heating
- Electric heating
- Energy recovery ventilation (ERV)
- Firestop
- Forced-air
- Forced-air gas
- Free cooling
- Heat recovery ventilation (HRV)
- Hybrid heat
- Hydronics
- HVAC
- Ice storage air conditioning
- Kitchen ventilation
- Mixed-mode ventilation
- Microgeneration
- Natural ventilation
- Passive cooling
- Passive house
- Radiant heating and cooling system
- Radiant cooling
- Radiant heating
- Radon mitigation
- Refrigeration
- Renewable heat
- Room air distribution
- Solar air heat
- Solar combisystem
- Solar cooling
- Solar heating
- Thermal insulation
- Underfloor air distribution
- Underfloor heating
- Vapor barrier
- Vapor-compression refrigeration (VCRS)
- Variable air volume (VAV)
- Variable refrigerant flow (VRF)
- Ventilation
|
|---|
| Components |
- Air conditioner inverter
- Air door
- Air filter
- Air handler
- Air ionizer
- Air-mixing plenum
- Air purifier
- Air source heat pumps
- Automatic balancing valve
- Back boiler
- Barrier pipe
- Blast damper
- Boiler
- Centrifugal fan
- Ceramic heater
- Chiller
- Condensate pump
- Condenser
- Condensing boiler
- Convection heater
- Compressor
- Cooling tower
- Damper
- Dehumidifier
- Duct
- Economizer
- Electrostatic precipitator
- Evaporative cooler
- Evaporator
- Exhaust hood
- Expansion tank
- Fan coil unit
- Fan filter unit
- Fan heater
- Fire damper
- Fireplace
- Fireplace insert
- Freeze stat
- Flue
- Freon
- Fume hood
- Furnace
- Furnace room
- Gas compressor
- Gas heater
- Gasoline heater
- Geothermal heat pump
- Grease duct
- Grille
- Ground-coupled heat exchanger
- Heat exchanger
- Heat pipe
- Heat pump
- Heating film
- Heating system
- High efficiency glandless circulating pump
- High-efficiency particulate air (HEPA)
- High pressure cut off switch
- Humidifier
- Infrared heater
- Inverter compressor
- Kerosene heater
- Louver
- Mechanical fan
- Mechanical room
- Oil heater
- Packaged terminal air conditioner
- Plenum space
- Pressurisation ductwork
- Process duct work
- Radiator
- Radiator reflector
- Recuperator
- Refrigerant
- Register
- Reversing valve
- Run-around coil
- Scroll compressor
- Solar chimney
- Solar-assisted heat pump
- Space heater
- Smoke exhaust ductwork
- Thermal expansion valve
- Thermal wheel
- Thermosiphon
- Thermostatic radiator valve
- Trickle vent
- Trombe wall
- Turning vanes
- Ultra-low particulate air (ULPA)
- Whole-house fan
- Windcatcher
- Wood-burning stove
|
|---|
Measurement and control |
- Air flow meter
- Aquastat
- BACnet
- Blower door
- Building automation
- Carbon dioxide sensor
- Clean Air Delivery Rate (CADR)
- Gas sensor
- Home energy monitor
- Humidistat
- HVAC control system
- Intelligent buildings
- LonWorks
- Minimum efficiency reporting value (MERV)
- OpenTherm
- Programmable communicating thermostat
- Programmable thermostat
- Psychrometrics
- Room temperature
- Smart thermostat
- Thermostat
- Thermostatic radiator valve
|
|---|
Professions, trades, and services |
- Architectural acoustics
- Architectural engineering
- Architectural technologist
- Building services engineering
- Building information modeling (BIM)
- Deep energy retrofit
- Duct leakage testing
- Environmental engineering
- Hydronic balancing
- Kitchen exhaust cleaning
- Mechanical engineering
- Mechanical, electrical, and plumbing
- Mold growth, assessment, and remediation
- Refrigerant reclamation
- Testing, adjusting, balancing
|
|---|
| Industry organizations |
- ACCA
- AHRI
- AMCA
- ASHRAE
- ASTM International
- BRE
- BSRIA
- CIBSE
- Institute of Refrigeration
- IIR
- LEED
- SMACNA
|
|---|
| Health and safety |
- Indoor air quality (IAQ)
- Passive smoking
- Sick building syndrome (SBS)
- Volatile organic compound (VOC)
|
|---|
| See also |
- ASHRAE Handbook
- Building science
- Fireproofing
- Glossary of HVAC terms
- World Refrigeration Day
- Template:Home automation
- Template:Solar energy
|
|---|