In number theory, a bi-twin chain of length k + 1 is a sequence of natural numbers
- [math]\displaystyle{ n-1,n+1,2n-1,2n+1, \dots, 2^k n - 1, 2^k n + 1 \, }[/math]
in which every number is prime.[1]
The numbers [math]\displaystyle{ n-1, 2n-1, \dots, 2^kn - 1 }[/math] form a Cunningham chain of the first kind of length [math]\displaystyle{ k + 1 }[/math], while [math]\displaystyle{ n+1, 2n + 1, \dots, 2^kn + 1 }[/math] forms a Cunningham chain of the second kind. Each of the pairs [math]\displaystyle{ 2^in - 1, 2^in+ 1 }[/math] is a pair of twin primes. Each of the primes [math]\displaystyle{ 2^in - 1 }[/math] for [math]\displaystyle{ 0 \le i \le k - 1 }[/math] is a Sophie Germain prime and each of the primes [math]\displaystyle{ 2^in - 1 }[/math] for [math]\displaystyle{ 1 \le i \le k }[/math] is a safe prime.
Largest known bi-twin chains
Largest known bi-twin chains of length k + 1 ((As of January 2014)[2])
| k |
n |
Digits |
Year |
Discoverer
|
| 0 |
3756801695685×2666669 |
200700 |
2011 |
Timothy D. Winslow, PrimeGrid
|
| 1 |
7317540034×5011# |
2155 |
2012 |
Dirk Augustin
|
| 2 |
1329861957×937#×23 |
399 |
2006 |
Dirk Augustin
|
| 3 |
223818083×409#×26 |
177 |
2006 |
Dirk Augustin
|
| 4 |
657713606161972650207961798852923689759436009073516446064261314615375779503143112×149# |
138 |
2014 |
Primecoin (block 479357)
|
| 5 |
386727562407905441323542867468313504832835283009085268004408453725770596763660073×61#×245 |
118 |
2014 |
Primecoin (block 476538)
|
| 6 |
263840027547344796978150255669961451691187241066024387240377964639380278103523328×47# |
99 |
2015 |
Primecoin (block 942208)
|
| 7 |
10739718035045524715×13# |
24 |
2008 |
Jaroslaw Wroblewski
|
| 8 |
1873321386459914635×13#×2 |
24 |
2008 |
Jaroslaw Wroblewski
|
q# denotes the primorial 2×3×5×7×...×q.
(As of 2014), the longest known bi-twin chain is of length 8.
Relation with other properties
Related chains
Related properties of primes/pairs of primes
- Twin primes
- Sophie Germain prime is a prime [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ 2p + 1 }[/math] is also prime.
- Safe prime is a prime [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ (p-1)/2 }[/math] is also prime.
Notes and references
- ↑ Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 2010, page 249.
- ↑ Henri Lifchitz, BiTwin records. Retrieved on 2014-01-22.
- As of this edit, this article uses content from "Bitwin chain", which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.
Prime number classes |
|---|
| By formula |
- Fermat (22n + 1)
- Mersenne (2p − 1)
- Double Mersenne (22p−1 − 1)
- Wagstaff (2p + 1)/3
- Proth (k·2n + 1)
- Factorial (n! ± 1)
- Primorial (pn# ± 1)
- Euclid (pn# + 1)
- Pythagorean (4n + 1)
- Pierpont (2m·3n + 1)
- Quartan (x4 + y4)
- Solinas (2m ± 2n ± 1)
- Cullen (n·2n + 1)
- Woodall (n·2n − 1)
- Cuban (x3 − y3)/(x − y)
- Carol (2n − 1)2 − 2
- Kynea (2n + 1)2 − 2
- Leyland (xy + yx)
- Thabit (3·2n − 1)
- Williams ((b−1)·bn − 1)
- Mills (⌊A3n⌋)
|
|---|
| By integer sequence |
- Fibonacci
- Lucas
- Pell
- Newman–Shanks–Williams
- Perrin
- Partitions
- Bell
- Motzkin
|
|---|
| By property |
- Wieferich (pair)
- Wall–Sun–Sun
- Wolstenholme
- Wilson
- Lucky
- Fortunate
- Ramanujan
- Pillai
- Regular
- Strong
- Stern
- Supersingular (elliptic curve)
- Supersingular (moonshine theory)
- Good
- Super
- Higgs
- Highly cototient
|
|---|
| Base-dependent |
- Happy
- Dihedral
- Palindromic
- Emirp
- Repunit (10n − 1)/9
- Permutable
- Circular
- Truncatable
- Strobogrammatic
- Minimal
- Weakly
- Full reptend
- Unique
- Primeval
- Self
- Smarandache–Wellin
- Tetradic
|
|---|
| Patterns |
- Twin (p, p + 2)
- Bi-twin chain (n − 1, n + 1, 2n − 1, 2n + 1, …)
- Triplet (p, p + 2 or p + 4, p + 6)
- Quadruplet (p, p + 2, p + 6, p + 8)
- k−Tuple
- Cousin (p, p + 4)
- Sexy (p, p + 6)
- Chen
- Sophie Germain (p, 2p + 1)
- Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
- Safe (p, (p − 1)/2)
- Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
- Balanced (consecutive p − n, p, p + n)
|
|---|
| By size |
- Titanic (1,000+ digits)
- Gigantic (10,000+ digits)
- Mega (1,000,000+ digits)
- Largest known
|
|---|
| Complex numbers |
- Eisenstein prime
- Gaussian prime
|
|---|
| Composite numbers |
- Pseudoprime
- Catalan
- Elliptic
- Euler
- Euler–Jacobi
- Fermat
- Frobenius
- Lucas
- Somer–Lucas
- Strong
- Carmichael number
- Almost prime
- Semiprime
- Interprime
- Pernicious
|
|---|
| Related topics |
- Probable prime
- Industrial-grade prime
- Illegal prime
- Formula for primes
- Prime gap
|
|---|
| First 60 primes |
- 2
- 3
- 5
- 7
- 11
- 13
- 17
- 19
- 23
- 29
- 31
- 37
- 41
- 43
- 47
- 53
- 59
- 61
- 67
- 71
- 73
- 79
- 83
- 89
- 97
- 101
- 103
- 107
- 109
- 113
- 127
- 131
- 137
- 139
- 149
- 151
- 157
- 163
- 167
- 173
- 179
- 181
- 191
- 193
- 197
- 199
- 211
- 223
- 227
- 229
- 233
- 239
- 241
- 251
- 257
- 263
- 269
- 271
- 277
- 281
|
|---|
List of prime numbers |
 | Original source: https://en.wikipedia.org/wiki/Bi-twin chain. Read more |