Biconvex optimization is a generalization of convex optimization where the objective function and the constraint set can be biconvex. There are methods that can find the global optimum of these problems.[1][2]
A set [math]\displaystyle{ B \subset X\times Y }[/math] is called a biconvex set on [math]\displaystyle{ X\times Y }[/math] if for every fixed [math]\displaystyle{ y\in Y }[/math], [math]\displaystyle{ B_y = \{x \in X: (x,y) \in B\} }[/math] is a convex set in [math]\displaystyle{ X }[/math] and for every fixed [math]\displaystyle{ x\in X }[/math], [math]\displaystyle{ B_x = \{y \in Y: (x,y) \in B\} }[/math] is a convex set in [math]\displaystyle{ Y }[/math].
A function [math]\displaystyle{ f(x, y): B \to \mathbb{R} }[/math] is called a biconvex function if fixing [math]\displaystyle{ x }[/math], [math]\displaystyle{ f_x(y) = f(x, y) }[/math] is convex over [math]\displaystyle{ Y }[/math] and fixing [math]\displaystyle{ y }[/math], [math]\displaystyle{ f_y(x) = f(x, y) }[/math] is convex over [math]\displaystyle{ X }[/math].
A common practice for solving a biconvex problem (which does not guarantee global optimality of the solution) is alternatively updating [math]\displaystyle{ x, y }[/math] by fixing one of them and solving the corresponding convex optimization problem.[1]
The generalization to functions of more than two arguments
is called a block multi-convex function.
A function
[math]\displaystyle{
f(x_1,\ldots,x_K) \to \mathbb{R}
}[/math]
is block multi-convex
iff it is convex with respect to each of the individual arguments
while holding all others fixed.[3]
References
- ↑ 1.0 1.1 Gorski, Jochen; Pfeuffer, Frank; Klamroth, Kathrin (22 June 2007). "Biconvex sets and optimization with biconvex functions: a survey and extensions". Mathematical Methods of Operations Research 66 (3): 373–407. doi:10.1007/s00186-007-0161-1. http://www2.math.uni-wuppertal.de/~klamroth/publications/gopfkl07.pdf.
- ↑ Floudas, Christodoulos A. (2000). Deterministic global optimization : theory, methods, and applications. Dordrecht [u.a.]: Kluwer Academic Publ.. ISBN 978-0-7923-6014-8. https://www.springer.com/mathematics/book/978-0-7923-6014-8.
- ↑ Chen, Caihua (2016). ""The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent"". Mathematical Programming 155 (1–2): 57–59. doi:10.1007/s10107-014-0826-5.
Optimization: Algorithms, methods, and heuristics |
|---|
Unconstrained nonlinear |
|---|
| … functions |
- Golden-section search
- Interpolation methods
- Line search
- Nelder–Mead method
- Successive parabolic interpolation
|
|---|
| … and gradients | | Convergence |
- Trust region
- Wolfe conditions
|
|---|
| Quasi–Newton |
- Berndt–Hall–Hall–Hausman
- Broyden–Fletcher–Goldfarb–Shanno and L-BFGS
- Davidon–Fletcher–Powell
- Symmetric rank-one (SR1)
|
|---|
| Other methods |
- Gauss–Newton
- Gradient
- Levenberg–Marquardt
- Conjugate gradient
- Truncated Newton
|
|---|
|
|---|
| … and Hessians | |
|---|
|
| |
Constrained nonlinear |
|---|
| General |
- Barrier methods
- Penalty methods
|
|---|
| Differentiable |
- Augmented Lagrangian methods
- Sequential quadratic programming
- Successive linear programming
|
|---|
|
|
Convex optimization |
|---|
Convex minimization |
- Cutting-plane method
- Reduced gradient (Frank–Wolfe)
- Subgradient method
|
|---|
Linear and quadratic | | Interior point |
- Affine scaling
- Ellipsoid algorithm of Khachiyan
- Projective algorithm of Karmarkar
|
|---|
| Basis-exchange |
- Simplex algorithm of Dantzig
- Revised simplex algorithm
- Criss-cross algorithm
- Principal pivoting algorithm of Lemke
|
|---|
|
|---|
|
|
Combinatorial |
|---|
| Paradigms |
- Approximation algorithm
- Dynamic programming
- Greedy algorithm
- Integer programming
|
|---|
Graph algorithms |
- Bellman–Ford
- Dijkstra
- Floyd–Warshall
|
|---|
| Network flows |
Dinic
Edmonds–Karp
Ford–Fulkerson
Push–relabel maximum flow
|
|---|
|
|
Metaheuristics |
|---|
- Evolutionary algorithm
- Hill climbing
- Local search
- Simulated annealing
- Tabu search
|
|
|
 | Original source: https://en.wikipedia.org/wiki/Biconvex optimization. Read more |