Lithium Peroxide

From Handwiki

Lithium peroxide
Lithium peroxide.svg
Li2O2.png
__ Li+     __ O
Names
Other names
Dilithium peroxide, Lithium (I) peroxide
Identifiers
CAS Number
  • 12031-80-0 ☑Y
3D model (JSmol)
  • Interactive image
ChemSpider
  • 23787 ☑Y
PubChem CID
  • 25489
UNII
  • 9ANX556R5F ☑Y
Properties
Chemical formula
Li2O2
Molar mass 45.881 g/mol
Appearance fine, white powder
Odor odorless
Density 2.31 g/cm3[1][2]
Melting point Decomposes to Li2O at ~340°C [3]
Boiling point NA
Solubility in water
soluble
Structure
Crystal structure
hexagonal
Thermochemistry
Std enthalpy of
formation fH298)
-13.82 kJ/g
Hazards
GHS pictograms GHS03: OxidizingGHS05: Corrosive
GHS Signal word Danger
GHS hazard statements
H271, H272, H314, H318
GHS precautionary statements
P210, P220, P221, P260, P264, P280, P283, P301+330+331, P303+361+353, P304+340, P305+351+338, P306+360, P310, P321, P363, P370+378, P371+380+375, P405, P501
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasReactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard OX: Oxidizer. E.g. potassium perchlorateNFPA 704 four-colored diamond
0
3
2
OX
Related compounds
Other cations
Sodium peroxide
Potassium peroxide
Rubidium peroxide
Caesium peroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):
  • SizeSet

Lithium peroxide is the inorganic compound with the formula Li2O2. It is a white, nonhygroscopic solid. Because of its high oxygen:mass and oxygen:volume ratios, the solid has been used to remove CO2 from the atmosphere in spacecraft.[4]

Preparation

It is prepared by the reaction of hydrogen peroxide and lithium hydroxide. This reaction initially produces lithium hydroperoxide:[4][5]

LiOH + H2O2 → LiOOH + H2O

This lithium hydroperoxide has also been described as lithium peroxide monoperoxohydrate trihydrate (Li2O2·H2O2·3H2O). Dehydration of this material gives the anhydrous peroxide salt:

2 LiOOH → Li2O2 + H2O2

Li2O2 decomposes at about 450 °C to give lithium oxide:

2 Li2O2 → 2 Li2O + O2

The structure of solid Li2O2 has been determined by X-ray crystallography and density functional theory. The solid features an eclipsed "ethane-like" Li6O2 subunits with an O-O distance of around 1.5 Å.[6]

Uses

It is used in air purifiers where weight is important, e.g., spacecraft to absorb carbon dioxide and release oxygen in the reaction:[4]

Li2O2 + CO2 → Li2CO3 + ​12 O2

It absorbs more CO2 than does the same weight of lithium hydroxide and offers the bonus of releasing oxygen.[7] Furthermore, unlike most other alkali metal peroxides, it is not hygroscopic.

The reversible lithium peroxide reaction is the basis for a prototype lithium–air battery. Using oxygen from the atmosphere allows the battery to eliminate storage of oxygen for its reaction, saving battery weight and size.[8]

The successful combination of a lithium-air battery overlain with an air-permeable mesh solar cell was announced by The Ohio State University in 2014.[9] The combination of two functions in one device (a "solar battery") is expected to reduce costs significantly compared to separate devices and controllers as are currently employed.

See also

  • Lithium oxide

References

  1. "Physical Constants of Inorganic Compounds," in CRC Handbook of Chemistry and Physics, 91st Edition (Internet Version 2011), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, Florida. (pp: 4-72).
  2. Speight, James G. (2005). Lange's Handbook of Chemistry (16th Edition). (pp: 1.40). McGraw-Hill. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1347&VerticalID=0
  3. Phys.Chem.Chem.Phys.,2013,15, 11025. doi:10.1039/c3cp51056e
  4. 4.0 4.1 4.2 Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 98. ISBN 978-0-08-022057-4. https://books.google.com/books?id=OezvAAAAMAAJ&q=0-08-022057-6&dq=0-08-022057-6&source=bl&ots=m4tIRxdwSk&sig=XQTTjw5EN9n5z62JB3d0vaUEn0Y&hl=en&sa=X&ei=UoAWUN7-EM6ziQfyxIDoCQ&ved=0CD8Q6AEwBA. 
  5. E. Dönges "Lithium and Sodium Peroxides" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 979.
  6. L. G. Cota and P. de la Mora "On the structure of lithium peroxide, Li2O2" Acta Crystallogr. 2005, vol. B61, pages 133-136. doi:10.1107/S0108768105003629
  7. Ulrich Wietelmann, Richard J. Bauer "Lithium and Lithium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH: Weinheim. doi:10.1002/14356007.a15_393.pub2
  8. Girishkumar, G.; B. McCloskey; AC Luntz; S. Swanson; W. Wilcke (July 2, 2010). "Lithium- air battery: Promise and challenges". The Journal of Physical Chemistry Letters 1 (14): 2193–2203. doi:10.1021/jz1005384. 
  9. [1] Patent-pending device invented at The Ohio State University: the world’s first solar battery.

External links

  • WebElements entry



Retrieved from "https://handwiki.org/wiki/index.php?title=Chemistry:Lithium_peroxide&oldid=2602955"

Categories: [Peroxides] [Lithium compounds] [Oxidizing agents]


Download as ZWI file | Last modified: 04/14/2023 21:58:26 | 8 views
☰ Source: https://handwiki.org/wiki/Chemistry:Lithium_peroxide | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]