From Encyclopediaofmath Brauer–Manin obstruction
An invariant attached to a geometric object $X$ which measures the failure of the Hasse principle for $X$: that is, if the obstruction is non-trivial, then $X$ may have points over all local fields but not over a global field.
For abelian varieties the Manin obstruction is just the Tate-Shafarevich group and fully accounts for the failure of the local-to-global principle. There are however examples, due to Skorobogatov, of varieties with trivial Manin obstruction which have points everywhere locally and yet no global points.