From Handwiki In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.
Let [math]\displaystyle{ w }[/math] be a Fourier series with Fourier coefficients [math]\displaystyle{ c_k }[/math], relating to each other as
such that the [math]\displaystyle{ n\times n }[/math] Toeplitz matrices [math]\displaystyle{ T_n(w) = \left(c_{k-l}\right)_{0\leq k,l \leq n-1} }[/math] are Hermitian, i.e., if [math]\displaystyle{ T_n(w)=T_n(w)^\ast }[/math] then [math]\displaystyle{ c_{-k}=\overline{c_k} }[/math]. Then both [math]\displaystyle{ w }[/math] and eigenvalues [math]\displaystyle{ (\lambda_m^{(n)})_{0\leq m \leq n-1} }[/math] are real-valued and the determinant of [math]\displaystyle{ T_n(w) }[/math] is given by
Under suitable assumptions the Szegő theorem states that
for any function [math]\displaystyle{ F }[/math] that is continuous on the range of [math]\displaystyle{ w }[/math]. In particular
[math]\displaystyle{ \lim_{n\rightarrow \infty}\frac{1}{n} \sum_{m=0}^{n-1}\lambda_m^{(n)} = \frac{1}{2\pi} \int_0^{2\pi} w(\theta)\, d\theta \lt \infty }[/math] |
|
() |
such that the arithmetic mean of [math]\displaystyle{ \lambda^{(n)} }[/math] converges to the integral of [math]\displaystyle{ w }[/math].[4]
The first Szegő theorem[1][3][5] states that, if right-hand side of (1) holds and [math]\displaystyle{ w \geq 0 }[/math], then
[math]\displaystyle{ \lim_{n \to \infty} \left(\det T_n(w)\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{\det T_n(w)}{\det T_{n-1}(w)} = \exp \left( \frac{1}{2\pi} \int_0^{2\pi} \log w(\theta) \, d\theta \right) }[/math] |
|
() |
holds for [math]\displaystyle{ w \gt 0 }[/math] and [math]\displaystyle{ w\in L_1 }[/math]. The RHS of (2) is the geometric mean of [math]\displaystyle{ w }[/math] (well-defined by the arithmetic-geometric mean inequality).
Let [math]\displaystyle{ \widehat c_k }[/math] be the Fourier coefficient of [math]\displaystyle{ \log w \in L^{1} }[/math], written as
The second (or strong) Szegő theorem[1][6] states that, if [math]\displaystyle{ w \geq 0 }[/math], then
![]() |
Categories: [Theorems in analysis] [Matrices] [Linear algebra]