Convexity, Logarithmic

From Encyclopediaofmath

2020 Mathematics Subject Classification: Primary: 26A51 [MSN][ZBL]

The property of a non-negative function $f$, defined on some interval, that can be described as follows: If for any $x_1$ and $x_2$ in this interval and for any $p_1 \ge 0$, $p_2 \ge 0$ with $p_1+p_2=1$ the inequality $$ f(p_1x_1 + p_2x_2) \le f(x_1)^{p_1} \cdot f(x_2)^{p_2} $$ is satisfied, $f$ is called logarithmically convex. If a function is logarithmically convex, it is either identically equal to zero or is strictly positive and $\log f$ is a convex function (of a real variable).



Download as ZWI file | Last modified: 12/26/2025 17:12:46 | 7 views
☰ Source: https://encyclopediaofmath.org/wiki/Convexity,_logarithmic | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]