From Encyclopediaofmath The branch of affine geometry that studies the invariants of an affine unimodular group of transformations. The most important fact is the existence in equi-affine geometry of areas of parallelograms in plane geometry and of volumes of parallelepipeds in three-dimensional geometry.
See [a1], p. 276; [a2], pp. 150-156; [a3], pp.40-52; [a4]; and [a5], p. 367.
| [a1] | M. Berger, "Geometry" , I , Springer (1987) |
| [a2] | M. Spivak, "A comprehensive introduction to differential geometry" , 2 , Publish or Perish pp. 1–5 |
| [a3] | L. Fejes Toth, "Lagerungen in der Ebene, auf der Kugel und im Raum" , Springer (1972) |
| [a4] | J. Dieudonné, "Treatise on analysis" , 4 , Acad. Press (1974) |
| [a5] | W. Blaschke, "Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Affine Differentialgeometrie" , 2 , Springer (1923) |
Categories: [Geometry]