From Handwiki In graph theory, there are several notions as to what it means for a sequence of graphs to be "random-like". Roughly speaking, we would like to call a sequence of graphs "random-like" if certain graph properties of the sequence are reasonably similar to those of a sequence of Erdős–Rényi random graphs. In the late 1980s, Fan Chung, Ronald Graham and Richard Wilson showed that many of the notions are in fact equivalent.
Let [math]\displaystyle{ p\in(0,1) }[/math] be a fixed constant, and let [math]\displaystyle{ \{G_n\}_{n=1}^{\infty} }[/math] be a sequence of graphs with [math]\displaystyle{ \{G_n\} }[/math] having [math]\displaystyle{ n }[/math] vertices and [math]\displaystyle{ (p+o(1))\binom{n}{2} }[/math] edges, for fixed [math]\displaystyle{ 0\lt p\lt 1 }[/math]. Denote [math]\displaystyle{ G_n }[/math] by [math]\displaystyle{ G }[/math]. Then, the following graph properties are equivalent:
If any of the above conditions is satisfied, then we say that the sequence of graphs [math]\displaystyle{ \{G_n\}_{n=1}^{\infty} }[/math] is quasi-random.
In what follows, [math]\displaystyle{ v(H)=|V(H)| }[/math] and [math]\displaystyle{ e(H)=|E(H)| }[/math].
Simply take [math]\displaystyle{ Y=X }[/math].
By the inclusion–exclusion principle, we can write [math]\displaystyle{ e(X,Y) }[/math] in terms of the edge counts of individual vertex sets: [math]\displaystyle{ e(X,Y)=e(X\cup Y)+e(X\cap Y)-e(X\setminus Y)-e(Y\setminus X). }[/math] Then, by the alternative discrepancy condition,
This follows from the graph counting lemma, taking [math]\displaystyle{ V_i=G }[/math] for [math]\displaystyle{ i=1,\ldots,v(H) }[/math].
The 4-cycle [math]\displaystyle{ C_4 }[/math] is just a special case of [math]\displaystyle{ H }[/math].
Using the idea of the second moment method from probabilistic combinatorics, we can show that the variance of [math]\displaystyle{ \operatorname{codeg}(u,v) }[/math] is [math]\displaystyle{ o\left(n^3\right) }[/math].
This follows from Cauchy-Schwarz and the definition of codegree.
The number of labelled 4-cycles in [math]\displaystyle{ G_n }[/math] is within [math]\displaystyle{ O(n^3) }[/math] of the number of closed walks of length 4 in [math]\displaystyle{ G_n }[/math], which is [math]\displaystyle{ \operatorname{tr}(A_G^4) }[/math], where [math]\displaystyle{ A_G }[/math] denote the adjacency matrix of [math]\displaystyle{ G }[/math]. From linear algebra, we know that [math]\displaystyle{ \operatorname{tr}(A_G^4)=\sum_{i=1}^n \lambda_i^4 }[/math]. The dominating term is [math]\displaystyle{ \lambda_1 }[/math]: by assumption, [math]\displaystyle{ \lambda_1^4=p^4n^4+o(n^4) }[/math]. It remains to check that the sum of the other [math]\displaystyle{ \lambda_i^4 }[/math]s are not too big. Indeed, [math]\displaystyle{ \sum_{i\ge 2}\lambda_i^4\le\max_{i\neq 2}|\lambda_i|^2\sum_{i\ge 1}\lambda_i^2=\max_{i\neq 2}|\lambda_i|^2\operatorname{tr}(A_G^2)=\max_{i\neq 2}|\lambda_i|^2\cdot2e(G)=o(n^4). }[/math]
By the min-max theorem, [math]\displaystyle{ \lambda_1\ge \frac{\boldsymbol{1}^TA_G\boldsymbol{1}}{\boldsymbol{1}^T\boldsymbol{1}}=\frac{2e(G)}{n}=\left(p+o(1)\right)n }[/math], where [math]\displaystyle{ \boldsymbol{1} }[/math] denote the vector in [math]\displaystyle{ \mathbb{R}^{v(G)} }[/math] whose entries are all 1. On the other hand, by the 4-cycle counting condition [math]\displaystyle{ \lambda_1^4\le \sum_{i=1}^n \lambda_i^4=\operatorname{tr} A_G^4\le p^4n^4+o(n^4). }[/math]Thus, [math]\displaystyle{ \lambda_1= pn+o(n) }[/math], and [math]\displaystyle{ \max_{i\neq 1} |\lambda_i|^4\le \operatorname{tr}(A_G^4)-\lambda_1^4\le p^4n^4-p^4n^4+o(n^4)=o(n^4). }[/math]
Categories: [Graph theory]