
|
Main Article
|
Discussion
|
Related Articles [?]
|
Bibliography [?]
|
External Links [?]
|
Citable Version [?]
|
|
|
|
This editable Main Article is under development and subject to a disclaimer. [edit intro]
|
In algebra, the content of a polynomial is the highest common factor of its coefficients.
A polynomial is primitive if it has content unity.
Gauss's lemma for polynomials may be expressed as stating that for polynomials over a unique factorization domain, the content of the product of two polynomials is the product of their contents.
References[edit]
- B. Hartley; T.O. Hawkes (1970). Rings, modules and linear algebra. Chapman and Hall. ISBN 0-412-09810-5.
- Serge Lang (1993). Algebra, 3rd ed.. Addison-Wesley. ISBN 0-201-55540-9.
- David Sharpe (1987). Rings and factorization. Cambridge University Press, 68-69. ISBN 0-521-33718-6.