Short description: Several medications that disrupt movement of K+ ions
Tetraethylammonium is a commonly used potassium channel blocker
Potassium channel blockers are agents which interfere with conduction through potassium channels.
Contents
1Medical uses
1.1Arrhythmia
1.1.1Mechanism
1.1.2Examples and uses
1.1.3Side effects
1.2Anti-diabetics
1.3Other uses
2Reverse use dependence
3Calcium-activated potassium channel blockers
4Inwardly rectifying channel blockers
4.1ROMK (Kir1.1)
4.2GPCR regulated (Kir3.x)
4.3ATP-sensitive (Kir6.x)
5Tandem pore domain channel blockers
6Voltage-gated channel blockers
6.1hERG (KCNH2, Kv11.1)-specific
6.2KCNQ (Kv7)-specific
7See also
8Notes
9References
Medical uses
Arrhythmia
Effect of class III antiarrhythmic agent on cardiac action potential.
Potassium channel blockers used in the treatment of cardiac arrhythmia are classified as class III antiarrhythmic agents.
Mechanism
Class III agents predominantly block the potassium channels, thereby prolonging repolarization.[1] More specifically, their primary effect is on IKr.[2]
Since these agents do not affect the sodium channel, conduction velocity is not decreased. The prolongation of the action potential duration and refractory period, combined with the maintenance of normal conduction velocity, prevent re-entrant arrhythmias. (The re-entrant rhythm is less likely to interact with tissue that has become refractory).
Examples and uses
Amiodarone is indicated for the treatment of refractory VT or VF, particularly in the setting of acute ischemia. Amiodarone is also safe to use in individuals with cardiomyopathy and atrial fibrillation, to maintain normal sinus rhythm. Amiodarone prolongation of the action potential is uniform over a wide range of heart rates, so this drug does not have reverse use-dependent action. Amiodarone was the first agent described in this class.[3] Amiodarone should only be used to treat adults with life-threatening ventricular arrhythmias when other treatments are ineffective or have not been tolerated.[4]
Dofetilide blocks only the rapid K channels; this means that at higher heart rates, when there is increased involvement of the slow K channels, dofetilide has less of an action potential-prolonging effect.
Sotalol is indicated for the treatment of atrial or ventricular tachyarrhythmias, and AV re-entrant arrhythmias.
Ibutilide is the only antiarrhythmic agent currently approved by the Food and Drug Administration for acute conversion of atrial fibrillation to sinus rhythm.
Azimilide
Bretylium
Clofilium
E-4031
Nifekalant[5]
Tedisamil
Sematilide
Side effects
These agents include a risk of torsades de pointes.[6]
Anti-diabetics
Sulfonylureas, such as gliclazide, are ATP-sensitive potassium channel blockers.
Other uses
Dalfampridine, A potassium channel blocker has also been approved for use in the treatment of multiple sclerosis.[7]
Reverse use dependence
Potassium channel blockers exhibit reverse use-dependent prolongation of the action potential duration. Reverse use dependence is the effect where the efficacy of the drug is reduced after repeated use of the tissue.[8] This contrasts with (ordinary) use dependence, where the efficacy of the drug is increased after repeated use of the tissue.
Reverse use dependence is relevant for potassium channel blockers used as class III antiarrhythmics. Reverse use dependent drugs that slow heart rate (such as quinidine) can be less effective at high heart rates.[8] The refractoriness of the ventricular myocyte increases at lower heart rates.[citation needed] This increases the susceptibility of the myocardium to early Afterdepolarizations (EADs) at low heart rates.[citation needed] Antiarrhythmic agents that exhibit reverse use-dependence (such as quinidine) are more efficacious at preventing a tachyarrhythmia than converting someone into normal sinus rhythm.[citation needed] Because of the reverse use-dependence of class III agents, at low heart rates class III antiarrhythmic agents may paradoxically be more arrhythmogenic.
Drugs such as quinidine may be both reverse use dependent and use dependent.[8]
Calcium-activated potassium channel blockers
Examples of calcium-activated potassium channel blockers include:
Charybdotoxin[9][10][11][12]
Iberiotoxin[13]
Apamin[14][12]
Kaliotoxin,[15][16]
Lolitrem,[17]
BKCa-specific
GAL-021[18]
Ethanol (alcohol)[19]
Inwardly rectifying channel blockers
Examples of inwardly rectifying channel blockers include:
ROMK (Kir1.1)
Nonselective: Ba2+,[20] Cs+[21]
GPCR regulated (Kir3.x)
GPCR antagonists[example needed]
Ifenprodil[22]
Cloperastine[23][24][25]
Dextromethorphan [citation needed]
Tertiapin[26][12]
Tipepidine[27]
CGP-7930[28]
Ba2+[20]
ATP-sensitive (Kir6.x)
Meglitinides (Non-Sulfonylureas)
Mitiglinide
Nateglinide
Repaglinide
Sulfonylureas
Acetohexamide [citation needed]
Chlorpropamide [citation needed]
Glycyclamide
Metahexamide
Sulfonylureas (continued)
Tolazamide
Tolbutamide
Glisoxepide
Glyclopyramide
Gliclazide[29]
Glibenclamide (glyburide)[30][12]
Tandem pore domain channel blockers
Examples of tandem pore domain channel blockers include:
↑ a very potent inhibitor of the rat Kv1.3 voltage-gated potassium channel
References
↑"Dofetilide, a new class III antiarrhythmic agent". Pharmacotherapy20 (7): 776–86. July 2000. doi:10.1592/phco.20.9.776.35208. PMID 10907968.
↑"Relationship among amiodarone, new class III antiarrhythmics, miscellaneous agents and acquired long QT syndrome". Cardiol J15 (3): 209–19. 2008. PMID 18651412.
↑"Milestones in the Evolution of the Study of Arrhythmias". http://www.medscape.com/viewarticle/412798_3.
↑"Nifekalant hydrochloride, a novel class III antiarrhythmic agent, suppressed postoperative recurrent ventricular tachycardia in a patient undergoing coronary artery bypass grafting and the Dor approach". Circ. J.67 (8): 712–4. August 2003. doi:10.1253/circj.67.712. PMID 12890916. http://www.jstage.jst.go.jp/article/circj/67/8/67_712/_article/-char/en.
↑"Introduction: Arrhythmias and Conduction Disorders: Merck Manual Professional". http://www.merck.com/mmpe/sec07/ch075/ch075a.html.
↑"Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment". Pharmacol. Ther.111 (1): 224–59. July 2006. doi:10.1016/j.pharmthera.2005.10.006. PMID 16472864.
↑ 8.08.18.2Hondeghem, L. M. (1995), Breithardt, Günter; Borggrefe, Martin; Camm, A. John et al., eds., "Use Dependence and Reverse Use Dependence of Antiarrhythmic Agents: Pro- and Antiarrhythmic Actions", Antiarrhythmic Drugs: Mechanisms of Antiarrhythmic and Proarrhythmic Actions (Springer Berlin Heidelberg): pp. 92–105, doi:10.1007/978-3-642-85624-2_6, ISBN 9783642856242
↑"Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels". Biophysical Journal78 (5): 2382–91. May 2000. doi:10.1016/S0006-3495(00)76782-8. PMID 10777734. Bibcode: 2000BpJ....78.2382T.
↑"A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel". Neuron16 (1): 123–30. January 1996. doi:10.1016/S0896-6273(00)80029-X. PMID 8562075.
↑"Peptide toxins and small-molecule blockers of BK channels". Acta Pharmacologica Sinica37 (1): 56–66. January 2016. doi:10.1038/aps.2015.139. PMID 26725735.
↑ 12.012.112.212.312.4Rang, HP (2015). Pharmacology (8 ed.). Edinburgh: Churchill Livingstone. p. 59. ISBN 978-0-443-07145-4.
↑Candia, S; Garcia, ML; Latorre, R (1992). "Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel". Biophysical Journal63 (2): 583–90. doi:10.1016/S0006-3495(92)81630-2. PMID 1384740. Bibcode: 1992BpJ....63..583C.
↑M. Stocker; M. Krause; P. Pedarzani (1999). "An apamin-sentisitive Ca2+-activated K+ current in hippocampal pyramidal neurons". PNAS96 (8): 4662–4667. doi:10.1073/pnas.96.8.4662. PMID 10200319. Bibcode: 1999PNAS...96.4662S.
↑Baldus, Marc; Becker, Stefan; Pongs, Olaf; Martin-Eauclaire, Marie-France; Hornig, Sönke; Giller, Karin; Lange, Adam (April 2006). "Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR". Nature440 (7086): 959–962. doi:10.1038/nature04649. ISSN 1476-4687. PMID 16612389. Bibcode: 2006Natur.440..959L.
↑Martin-Eauclaire, M. F.; Mansuelle, P.; Rochat, H.; Benslimane, A.; Zerrouk, H.; Gola, M.; Jacquet, G.; Crest, M. (1992-01-25). "Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom.". Journal of Biological Chemistry267 (3): 1640–1647. doi:10.1016/S0021-9258(18)45993-5. ISSN 0021-9258. PMID 1730708. http://www.jbc.org/content/267/3/1640.
↑Philippe, G (15 February 2016). "Lolitrem B and Indole Diterpene Alkaloids Produced by Endophytic Fungi of the Genus Epichloë and Their Toxic Effects in Livestock.". Toxins8 (2): 47. doi:10.3390/toxins8020047. PMID 26891327.
↑McLeod, JF; Leempoels, JM; Peng, SX; Dax, SL; Myers, LJ; Golder, FJ (November 2014). "GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers". British Journal of Anaesthesia113 (5): 875–83. doi:10.1093/bja/aeu182. PMID 24989775.
↑"Modulation of BK Channels by Ethanol". International Review of Neurobiology128: 239–79. 2016. doi:10.1016/bs.irn.2016.03.019. ISBN 9780128036198. PMID 27238266.
↑ 20.020.1Patnaik, Pradyot (2003). Handbook of inorganic chemicals. McGraw-Hill. pp. 77–78. ISBN 978-0-07-049439-8. https://archive.org/details/Handbook_of_Inorganic_Chemistry_Patnaik.
↑Sackin, H; Syn, S; Palmer, L G; Choe, H; Walters, D E (Feb 2001). "Regulation of ROMK by extracellular cations.". Biophysical Journal80 (2): 683–697. doi:10.1016/S0006-3495(01)76048-1. ISSN 0006-3495. PMID 11159436. Bibcode: 2001BpJ....80..683S.
↑"Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil". Neuropsychopharmacology31 (3): 516–24. March 2006. doi:10.1038/sj.npp.1300844. PMID 16123769.
↑YAMAMOTO, Gen; SOEDA, Fumio; SHIRASAKI, Tetsuya; TAKAHAMA, Kazuo (2011). "Is the GIRK Channel a Possible Target in the Development of a Novel Therapeutic Drug of Urinary Disturbance?". Yakugaku Zasshi131 (4): 523–532. doi:10.1248/yakushi.131.523. ISSN 0031-6903. PMID 21467791.
↑Jin, W; Lu, Z (1998). "A novel high affinity inhibitor for inward-rectifier K+ channels". Biochemistry37 (38): 13291–13299. doi:10.1021/bi981178p. PMID 9748337.
↑Kawaura, Kazuaki; Ogata, Yukino; Inoue, Masako; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo (2009). "The centrally acting non-narcotic antitussive tipepidine produces antidepressant-like effect in the forced swimming test in rats". Behavioural Brain Research205 (1): 315–318. doi:10.1016/j.bbr.2009.07.004. ISSN 0166-4328. PMID 19616036. https://kumadai.repo.nii.ac.jp/record/24712/files/BBR_205_1_315-318.pdf.
↑"CGP7930 - An allosteric modulator of GABABRs, GABAARs and inwardly-rectifying potassium channels". Neuropharmacology109644. July 2023. doi:10.1016/j.neuropharm.2023.109644. PMID 37422181.
↑Lawrence, C. L.; Proks, P.; Rodrigo, G. C.; Jones, P.; Hayabuchi, Y.; Standen, N. B.; Ashcroft, F. M. (2001). "Gliclazide produces high-affinity block of K ATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells". Diabetologia44 (8): 1019–25. doi:10.1007/s001250100595. PMID 11484080.
↑"Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis". Antimicrob. Agents Chemother.50 (12): 4214–6. December 2006. doi:10.1128/AAC.00617-06. PMID 17015627.
↑"Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem". Anesthesiology90 (4): 1092–102. Apr 1999. doi:10.1097/00000542-199904000-00024. PMID 10201682.
↑ 32.032.1"Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel". Neuropharmacology40 (4): 551–9. Mar 2001. doi:10.1016/S0028-3908(00)00189-1. PMID 11249964.
↑"Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5)". The Journal of Pharmacology and Experimental Therapeutics306 (1): 84–92. Jul 2003. doi:10.1124/jpet.103.049809. PMID 12660311.
↑"Inhibition of human TREK-1 channels by bupivacaine". Anesthesia and Analgesia96 (6): 1665–73. Jun 2003. doi:10.1213/01.ANE.0000062524.90936.1F. PMID 12760993.
↑"TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure". The EMBO Journal15 (5): 1004–11. Mar 1996. doi:10.1002/j.1460-2075.1996.tb00437.x. PMID 8605869.
↑"TASK, a human background K+ channel to sense external pH variations near physiological pH". The EMBO Journal16 (17): 5464–71. Sep 1997. doi:10.1093/emboj/16.17.5464. PMID 9312005.
↑"Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney". The Journal of Biological Chemistry273 (47): 30863–9. Nov 1998. doi:10.1074/jbc.273.47.30863. PMID 9812978.
↑"Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel". Pflügers Archiv439 (6): 714–22. Apr 2000. doi:10.1007/s004240050997. PMID 10784345.
↑ 39.039.1Kennard (2005). "Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine.". British Journal of Pharmacology144 (6): 821–9. doi:10.1038/sj.bjp.0706068. PMID 15685212.
↑ 44.044.1Wang, Shao-Ping; Wang, Jian-An; Luo, Rong-Hua; Cui, Wen-Yu; Wang, Hai (September 2008). "Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation". Clinical and Experimental Pharmacology & Physiology35 (9): 1077–1084. doi:10.1111/j.1440-1681.2008.04964.x. ISSN 1440-1681. PMID 18505444.
↑Tiku, Patience E.; Nowell, Peter T. (1991). "Selective inhibition of K+-stimulation of Na,K-ATPase by bretylium". British Journal of Pharmacology104 (4): 895–900. doi:10.1111/j.1476-5381.1991.tb12523.x. PMID 1667290.
↑"kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel". J. Biol. Chem.273 (1): 33–38. 1998. doi:10.1074/jbc.273.1.33. PMID 9417043.
↑Roukoz H; Saliba W (January 2007). "Dofetilide: a new class III antiarrhythmic agent". Expert Rev Cardiovasc Ther5 (1): 9–19. doi:10.1586/14779072.5.1.9. PMID 17187453.
↑Guillemare E, Marion A, Nisato D, Gautier P, “Inhibitory effects of dronedarone on muscarinic K+ current in guinea pig atrial cells,” in Journal of Cardiovascular Pharmacology, 2000 7
↑Kim I, Boyle KM, Carrol JL (2005) Postnatal development of E-4031-sensitive potassium current in rat carotid chemoreceptor cells. J Appl Physiol98(4):1469-1477,
↑"Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion". Diabetes55 (4): 1034–42. April 2006. doi:10.2337/diabetes.55.04.06.db05-0788. PMID 16567526.
↑"Gating modifier peptides as probes of pancreatic beta-cell physiology". Toxicon49 (2): 231–8. February 2007. doi:10.1016/j.toxicon.2006.09.012. PMID 17101164.
↑Lebrun, Bruno (1997). "A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom". Biochemical Journal328 (Pt 1): 321–327. doi:10.1042/bj3280321. PMID 9359871.
↑Murray, K. T. (10 February 1998). "Ibutilide". Circulation97 (5): 493–497. doi:10.1161/01.CIR.97.5.493. PMID 9490245.
↑Huys, I; Olamendi-Portugal, T; Garci-Goméz, BI; Vandenberghe, I (2004). "A subfamily of acidic alpha-K(+) toxins". J Biol Chem279 (4): 2781–9. doi:10.1074/jbc.M311029200. PMID 14561751.
↑B. Hille (1967). "The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ions." J. Gen. Physiol.50 1287-1302.
↑C. M. Armstrong (1971). "Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons." J. Gen. Physiol.58 413-437.