System (In A Category)

From Encyclopediaofmath


direct and inverse system in a category $ C $

A direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ in $ C $ consists of a collection of objects $ \{ Y ^ \alpha \} $, indexed by a directed set $ \Lambda = \{ \alpha \} $, and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \beta \} $ in $ C $, for $ \alpha \leq \beta $ in $ \Lambda $, such that

a) $ f _ \alpha ^ { \alpha } = 1 _ {Y ^ \alpha } $ for $ \alpha \in \Lambda $;

b) $ f _ \alpha ^ { \gamma } = f _ \beta ^ { \gamma } f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \gamma $ for $ \alpha \leq \beta \leq \gamma $ in $ \Lambda $.

There exists a category, $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $, whose objects are indexed collections of morphisms $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} _ {\alpha \in \Lambda } $ such that $ g _ \alpha = g _ \beta f _ \alpha ^ { \beta } $ if $ \alpha \leq \beta $ in $ \Lambda $ and whose morphisms with domain $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} $ and range $ \{ g _ \alpha ^ \prime : Y ^ \alpha \rightarrow Z ^ \prime \} $ are morphisms $ h: Z \rightarrow Z ^ \prime $ such that $ hg _ \alpha = g _ \alpha ^ \prime $ for $ \alpha \in \Lambda $. An initial object of $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ is called a direct limit of the direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $. The direct limits of sets, topological spaces, groups, and $ R $- modules are examples of direct limits in their respective categories.

Dually, an inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ in $ C $ consists of a collection of objects $ \{ Y _ \alpha \} $, indexed by a directed set $ \Lambda = \{ \alpha \} $, and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y _ \beta \rightarrow Y _ \alpha \} $ in $ C $, for $ \alpha \leq \beta $ in $ \Lambda $, such that

a $ {} ^ \prime $) $ f _ \alpha ^ { \alpha } = 1 _ {Y _ \alpha } $ for $ \alpha \in \Lambda $;

b $ {} ^ \prime $) $ f _ \alpha ^ { \gamma } = f _ \alpha ^ { \beta } f _ \beta ^ { \gamma } : Y _ \gamma \rightarrow Y _ \alpha $ for $ \alpha \leq \beta \leq \gamma $ in $ \Lambda $.

There exists a category, $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $, whose objects are indexed collections of morphisms $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} _ {\alpha \in \Lambda } $ such that $ g _ \alpha = f _ \alpha ^ { \beta } g _ \beta $ if $ \alpha \leq \beta $ in $ \Lambda $ and whose morphisms with domain $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} $ and range $ \{ g _ \alpha ^ \prime : X ^ \prime \rightarrow Y _ \alpha \} $ are morphisms $ h: X \rightarrow X ^ \prime $ of $ C $ such that $ g _ \alpha ^ \prime h = g _ \alpha $ for $ \alpha \in \Lambda $. A terminal object of $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ is called an inverse limit of the inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $. The inverse limits of sets, topological spaces, groups, and $ R $- modules are examples of inverse limits in their respective categories.

The concept of an inverse limit is a categorical generalization of the topological concept of a projective limit.

References[edit]

[1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)

Comments[edit]

There is a competing terminology, with "direct limit" replaced by "colimit" , and "inverse limit" by "limit" .

References[edit]

[1a] B. Mitchell, "Theory of categories" , Acad. Press (1965)


Download as ZWI file | Last modified: 11/04/2024 02:41:10 | 15 views
☰ Source: https://encyclopediaofmath.org/wiki/System_(in_a_category) | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]