| Square antiprismatic molecular geometry |
|---|
 |
| Examples | XeF2−8, ReF−8 |
|---|
| Point group | D4d |
|---|
| Coordination number | 8 |
|---|
| μ (Polarity) | 0 |
|---|
In chemistry, the square antiprismatic molecular geometry describes the shape of compounds where eight atoms, groups of atoms, or ligands are arranged around a central atom, defining the vertices of a square antiprism.[1] This shape has D4d symmetry and is one of the three common shapes for octacoordinate transition metal complexes, along with the dodecahedron and the bicapped trigonal prism.[2][3]
Like with other high coordination numbers, eight-coordinate compounds are often distorted from idealized geometries, as illustrated by the structure of Na3TaF8. In this case, with the small Na+ ions, lattice forces are strong. With the diatomic cation NO+, the lattice forces are weaker, such as in (NO)2XeF8, which crystallizes with a more idealized square antiprismatic geometry.
The distorted square antiprismatic [TaF8]3− anion in the Na3TaF8 lattice.[4]
The square antiprismatic [XeF8]2− anion in the lattice of nitrosonium octafluoroxenate(VI), (NO)2XeF8.[5]
Structure of the Bi82+ cluster in the [Bi8](GaCl4)2.
Examples
Square prismatic geometry and cubic geometry
Square prismatic geometry (D4h) is much less common compared to the square antiprism. An example of a molecular species with square prismatic geometry (a slightly flattened cube) is octafluoroprotactinate(V), [PaF8]3–, as found in its sodium salt, Na3PaF8.[6] While local cubic 8-coordination is common in ionic lattices (e.g., Ca2+ in CaF2), and some 8-coordinate actinide complexes are approximately cubic, there are no reported examples of rigorously cubic 8-coordinate molecular species. A number of other rare geometries for 8-coordination are also known.[2]
References
- ↑ D. L. Kepert (1978). "Aspects of the Stereochemistry of Eight-Coordination". Progress in Inorganic Chemistry 24: 179–249. doi:10.1002/9780470166253.ch4. ISBN 9780470166253.
- ↑ 2.0 2.1 Jeremy K. Burdett; Roald Hoffmann; Robert C. Fay (1978). "Eight-Coordination". Inorganic Chemistry 17 (9): 2553–2568. doi:10.1021/ic50187a041.
- ↑ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN:0-19-855370-6
- ↑ Langer, V.; Smrčok, L.; Boča, M. (2010). "Redetermination of Na3TaF8". Acta Crystallographica Section C 66 (9): pi85–pi86. doi:10.1107/S0108270110030556. PMID 20814090.
- ↑ Peterson, W.; Holloway, H.; Coyle, A.; Williams, M. (Sep 1971). "Antiprismatic Coordination about Xenon: the Structure of Nitrosonium Octafluoroxenate(VI)". Science 173 (4003): 1238–1239. doi:10.1126/science.173.4003.1238. ISSN 0036-8075. PMID 17775218. Bibcode: 1971Sci...173.1238P.
- ↑ Brown, D.; Easey, J. F.; Rickard, C. E. F. (1969). "Cubic co-ordination: crystal structure of sodium octafluoroprotactinate(V)" (in en). Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1161. doi:10.1039/j19690001161. ISSN 0022-4944. http://xlink.rsc.org/?DOI=j19690001161.
Molecular geometry (VSEPR) |
|---|
| Coordination number 2 | |
|---|
| Coordination number 3 |
- Trigonal planar
- Trigonal pyramidal
- T-shaped
|
|---|
| Coordination number 4 |
- Tetrahedral
- Square planar
- Seesaw
|
|---|
| Coordination number 5 |
- Trigonal bipyramidal
- Square pyramidal
- Pentagonal planar
|
|---|
| Coordination number 6 |
- Octahedral
- Trigonal prismatic
- Pentagonal pyramidal
|
|---|
| Coordination number 7 |
- Pentagonal bipyramidal
- Capped octahedral
- Capped trigonal prismatic
|
|---|
| Coordination number 8 |
- Square antiprismatic
- Dodecahedral
- Bicapped trigonal prismatic
|
|---|
| Coordination number 9 |
- Tricapped trigonal prismatic
- Capped square antiprismatic
|
|---|
 | Original source: https://en.wikipedia.org/wiki/Square antiprismatic molecular geometry. Read more |