Genetic Mutation

From Conservapedia

In biology, mutations are changes to the base pair sequence of genetic material (either DNA or RNA). Mutations can be caused by copying errors in the genetic material during cell division and by exposure to ultraviolet or ionizing radiation, chemical mutagens, or viruses, or can occur deliberately under cellular control during processes such as meiosis or hypermutation. In multicellular organisms, mutations can be subdivided into germline mutations, which can be passed on to descendants, and somatic mutations. The somatic mutations cannot be transmitted to descendants in animals. Plants sometimes can transmit somatic mutations to their descendants asexually or sexually (in case when flower buds develop in somatically mutated part of plant).

Mutations create variation in the gene pool, and the less favorable (or deleterious) mutations are removed from the gene pool by natural selection, while more favorable (beneficial or advantageous) ones tend to accumulate, resulting in evolutionary change. For example, a butterfly may develop offspring with a new mutation caused say by ultraviolet light from the sun. In most cases, this mutation is not good, since obviously there was no 'purpose' for such change at the molecular level. However, sometimes a mutation may change, say, the butterfly's color, making it harder for predators to see it; this is an advantage and the chances of this butterfly surviving and producing its own offspring are a little better, and over time the number of butterflies with this mutation may form a large percentage of the species. Neutral mutations are defined as mutations whose effects do not influence the fitness of either the species or the individuals who make up the species. These can accumulate over time due to genetic drift. The overwhelming majority of mutations have no significant effect, since DNA repair is able to mend most changes before they become permanent mutations, and many organisms have mechanisms for eliminating otherwise permanently mutated somatic cells.

Contents

  • 1 Classification
    • 1.1 By effect on structure
    • 1.2 By effect on function
    • 1.3 By aspect of phenotype affected
    • 1.4 Special classes
    • 1.5 Causes of mutation
  • 2 Harmful mutations
  • 3 Beneficial mutations
  • 4 References
    • 4.1 Online books
  • 5 External links

Classification[edit]

An illustration of five types of chromosomal mutations.

By effect on structure[edit]

The sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health depending on where they occur and whether they alter the function of essential proteins. Structurally, mutations can be classified as:

By effect on function[edit]

By aspect of phenotype affected[edit]

Special classes[edit]

Causes of mutation[edit]

Two classes of mutations are spontaneous mutations (molecular decay) and induced mutations caused by mutagens.

Spontaneous mutations on the molecular level include:

Induced mutations on the molecular level can be caused by:

DNA has so-called hotspots, where mutations occur up to 100 times more frequently than the normal mutation rate. A hotspot can be at an unusual base, e.g., 5-methylcytosine.

Mutation rates also vary across species. Evolutionary biologists have theorized that higher mutation rates are beneficial in some situations, because they allow organisms to evolve and therefore adapt more quickly to their environments. For example, repeated exposure of bacteria to antibiotics, and selection of resistant mutants, can result in the selection of bacteria that have a much higher mutation rate than the original population (mutator strains).

Harmful mutations[edit]

Changes in DNA caused by mutation can cause errors in protein sequence, creating partially or completely non-functional proteins. To function correctly, each cell depends on thousands of proteins to function in the right places at the right times. When a mutation alters a protein that plays a critical role in the body, a medical condition can result. A condition caused by mutations in one or more genes is called a genetic disorder. However, only a small percentage of mutations cause genetic disorders; most have no impact on health. For example, some mutations alter a gene's DNA base sequence but don’t change the function of the protein made by the gene.

If a mutation is present in a germ cell, it can give rise to offspring that carries the mutation in all of its cells. This is the case in hereditary diseases. On the other hand, a mutation can occur in a somatic cell of an organism. Such mutations will be present in all descendants of this cell, and certain mutations can cause the cell to become malignant, and thus cause cancer.

Often, gene mutations that could cause a genetic disorder are repaired by the DNA repair system of the cell. Each cell has a number of pathways through which enzymes recognize and repair mistakes in DNA. Because DNA can be damaged or mutated in many ways, the process of DNA repair is an important way in which the body protects itself from disease.

Beneficial mutations[edit]

A very small percentage of all mutations actually have a positive effect. These mutations lead to new versions of proteins that help an organism and its future generations better adapt to changes in their environment. For example, a specific 32 base pair deletion in human CCR5 (CCR5-32) confers HIV resistance to homozygotes and delays AIDS onset in heterozygotes.[1] The CCR5 mutation is more common in those of European descent. One theory for the etiology of the relatively high frequency of CCR5-32 in the European population is that it conferred resistance to the bubonic plague in mid-14th century Europe.[2]

References[edit]

  1. [1]
  2. [2]

Online books[edit]

External links[edit]


Categories: [Genetics]


Download as ZWI file | Last modified: 02/19/2023 02:04:19 | 11 views
☰ Source: https://www.conservapedia.com/Genetic_mutation | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]