Fomalhaut b (Dagon), 25 light-years away, with its parent star Fomalhaut blacked out, as pictured by Hubble in 2012.[1] In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[2]
Distribution of nearest known exoplanets as of March 2018
There are 4,160 known exoplanets, or planets outside the Solar System that orbit a star, as of January 1, 2020; only a small fraction of these are located in the vicinity of the Solar System.[3] Within 10 parsecs (32.6 light-years), there are 104 exoplanets listed as confirmed by the NASA Exoplanet Archive.[note 1][4] Among the over 500 known stars and brown dwarfs within 10 parsecs,[5][note 2] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][7] eight of which have planetary systems.
The first report of an exoplanet within this range was in 1998 for a planet orbiting around Gliese 876 (15.3 light-years (ly) away), and the latest as of 2023 are two around Gliese 367 (30.7 ly). The closest exoplanets are those found orbiting the star closest to the Solar System, which is Proxima Centauri 4.25 light-years away. The first confirmed exoplanet discovered in the Proxima Centauri system was Proxima Centauri b, in 2016. HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.
Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including planets around YZ Ceti, Gliese 367, and Proxima Centauri which may be less massive than Earth. Several confirmed exoplanets are hypothesized to be potentially habitable, with Proxima Centauri b and GJ 1002 b (15.8 ly) considered among the most likely candidates.[8] The International Astronomical Union has assigned proper names to some known extrasolar bodies, including nearby exoplanets, through the NameExoWorlds project. Planets named in the 2015 event include the planets around Epsilon Eridani (10.5 ly) and Fomalhaut,[note 4][11] while planets named in the 2022 event include those around Gliese 436, Gliese 486, and Gliese 367.[12]
Contents
1Exoplanets within 10 parsecs
1.1Excluded objects
2See also
3Notes
4References
5External links
Exoplanets within 10 parsecs
Key to colors
°
Mercury, Earth and Jupiter (for comparison purposes)
#
Confirmed multiplanetary systems
↑
Exoplanets believed to be potentially habitable[8]
Confirmed exoplanets[4]
Host star system
Companion exoplanet (in order from star)
Notes and additional planetary observations
Name
Distance (ly)
Apparent magnitude (V)
Mass (M☉)
Label [note 5]
Mass (M⊕)[note 6]
Radius (R⊕)
Semi-major axis (AU)
Orbital period (days)
Eccentricity
Inclination (°)
Discovery method
Discovery year
Sun°
0.000016
-26 −26.7
rowspan = "3"|1
b0 Mercury
|| 0000.0550 0.055
|| 0.3829 || 0.387 || 0088 88.0
|| 0.205 || — || — || 1 —
—
d0 Earth
|| 0001.0000 1
|| 1 || 1 || 0365 365.3
|| 0.0167 || — || — || 0 —
f0 Jupiter
|| 0317.8000 317.8
|| 10.9 10.973
|| 5.20 || 4333 4,333
|| 0.0488 || — || — || 1 —
Proxima Centauri#
4.2465
1113 11.13
rowspan="2" | 0.123
d
0000.2600 ≥0.26
—
0.0289
5.122
0.04
—
RV
2022
[14][15] one disputed candidate (c)[16][17][18][19]
b↑
0001.0700 ≥1.07
—
0.0486
11.19
0.02
—
RV
2016
Lalande 21185#
8.304
0752 7.52
rowspan="2"| 0.46
b
0002.6900 ≥2.69
—
0.0788
12.94
0.06
—
RV
2019
1 candidate[20]
c
0013.6000 ≥13.6
—
2.94
2946 2,946
0.13
—
RV
2021
Epsilon Eridani
10.489
0373 3.73
0.781
b0 Ægir
|| 242 || — || 3.53 || 2688.60 2,689
0.26
166.5
RV
2000
1 inferred planet, 1 or possibly 2 inner debris discs, and an outer disc[21][22]
Lacaille 9352#
10.724
0734 7.34
rowspan="2"| 0.489
b
0004.2000 ≥4.2
—
0.068
9.262
0.03
—
RV
2019
1 candidate[23][24]
c
0007.6000 ≥7.6
—
0.120
21.79
0.03
—
RV
2019
Ross 128
11.007
1110 11.1
0.168
b↑
0001.4000 ≥1.40
style="background:#BCD4E6;" | —
0.0496
9.866
0.12
—
RV
2017
[25]
Groombridge 34 A#
11.619
0810 8.1
rowspan="2"|0.38
b
0003.0300 ≥3.03
—
0.072
11.44
0.09
~54?
RV
2014
[26][27]
c
0036.0000 ≥36
—
5.4
7600 7,600
0.27
~54?
RV
2018
Epsilon Indi A
11.867
483 4.83
0.762
b
941
—
11.08
15676.48 15,700
0.42
98.7
RV
2018
[28][22]
Tau Ceti#
11.912
0350 3.50
rowspan = "4" | 0.78
g g
0001.7500 ≥1.75
—
0.133
0020 20.0
0.06
~35?
RV
2017
4 candidates [29][30][8][31][32][33]
h h
0001.8300 ≥1.8
—
0.243
0049 49.4
0.23
~35?
RV
2017
e e
0003.9300 ≥3.9
—
0.538
0163 163
0.18
~35?
RV
2017
f f
0003.9300 ≥3.9
—
1.33
0636 640
0.16
~35?
RV
2017
GJ 1061#
11.984
752 7.52
rowspan = "3" | 0.113
b
0001.3700 ≥1.37
—
0.021
3.204
<0.31
—
RV
2019
two solutions for d's orbit[34]
c↑
0001.7400 ≥1.74
—
0.035
6.689
<0.29
—
RV
2019
d↑
0001.6400 ≥1.64
—
0.054
13.03
<0.53
—
RV
2019
YZ Ceti#
12.122
1210 12.1
rowspan = "3" | 0.130
b
0000.7000 ≥0.70
—
0.0163
2.021
0.06
—
RV
2017
[35]
c
0001.1400 ≥1.14
—
0.0216
3.060
0.0
—
RV
2017
d
0001.0900 ≥1.09
—
0.0285
4.656
0.07
—
RV
2017
Luyten's Star#
12.348
1194 11.94
rowspan="4" | 0.29
c
0001.1800 ≥1.18
—
0.0365
4.723
0.10
—
RV
2017
[36][23]
b↑
0002.8900 ≥2.89
—
0.0911
18.65
0.17
—
RV
2017
d
0010.8000 ≥10.8
—
0.712
414
0.17
—
RV
2019
e
0009.3000 ≥9.3
—
0.849
542
0.03
—
RV
2019
Teegarden's Star#
12.497
1540 15.40
rowspan="2" | 0.08
b↑
0001.0500 ≥1.05
style="background:#BCD4E6;" | —
0.0252
4.910
0
—
RV
2019
[37]
c↑
0001.1100 ≥1.11
—
0.0443
11.41
0
—
RV
2019
Wolf 1061#
14.050
1010 10.1
rowspan="3" | 0.25
b
0001.9100 ≥1.91
—
0.0375
4.887
0.15
—
RV
2015
[36]
c↑
0003.4100 ≥3.41
—
0.0890
17.87
0.11
—
RV
2015
d
0007.7000 ≥7.7
—
0.470
217
0.55
—
RV
2015
TZ Arietis
14.578
1229.8 12.30
0.14
b
0067.0000 ≥67
—
0.88
771
0.46
—
RV
2019
2 refuted candidates[23][38][39]
Gliese 687#
14.839
0915 9.15
rowspan="2" |0.41
b
0017.2000 ≥17.2
—
0.163
38.14
0.17
—
RV
2014
[23][38]
c
0016.0000 ≥16.0
—
1.165
728
0.40
—
RV
2019
Gliese 674
14.849
0938 9.38
0.35
b
0011.0900 ≥11.1
—
0.039
4.694
0.20
—
RV
2007
[40]
Gliese 876#
15.238
1020 10.2
rowspan = "4"|0.33
d
6.68
—
0.0210
1.938
0.04
56.7
RV
2005
[41]
c
235
—
0.1309
30.10
0.26
56.7
RV
2000
b
749
—
0.2098
61.10
0.03
56.7
RV
1998
e
16
—
0.3355
123.6
0.05
56.7
RV
2010
GJ 1002#
15.806
1384 13.84
rowspan = "2"|0.12
b↑
0001.0800 ≥1.08
style="background:#BCD4E6;" | —
0.0457
10.35
—
—
RV
2022
[42]
c↑
0001.3600 ≥1.36
—
0.0738
21.2
—
—
RV
2022
Gliese 832
16.200
0867 8.67
0.45
b
315
—
3.7
3853 3,853
0.05
51 or 134
RV
2008
1 refuted candidate[43][44]
GJ 3323#
17.531
1220 12.2
rowspan = "2"| 0.164
b
0002.0200 ≥2.0
—
0.0328
0005.36 5.36
0.23 0.2
—
RV
2017
[45]
c
0002.3100 ≥2.3
—
0.126
0040.5 40.5
0.17 0.2
—
RV
2017
Gliese 251
18.215
0965 9.65
0.372
b
0004.0000 ≥4.0
—
0.0818
0014.238 14.2
0.10 0.10
—
RV
2020
[46]
Gliese 229 A#
18.791
0814 8.14
rowspan="2"|0.58
c↑
0007.3000 ≥7.3
style="background:#BCD4E6;" | —
0.339
0122.0 122
style="background:#BCD4E6;" | 0.19
—
RV
2020
Ab not confirmed until 2020.[47]
b
0008.5000 ≥8.5
—
0.898
0526.1 526
0.10
—
RV
2014
Gliese 752 A
19.292
0913 9.13
0.46
b
0013.6000 ≥13.6
—
0.338
0106.2 106
0.03
—
RV
2018
[48][23]
82 G. Eridani#
19.704
0426 4.26
rowspan = "4"|0.85
b
0002.7000 ≥2.7
—
0.121
0018 18.3
0 ~0
—
RV
2011
2 candidates [49][50][51]
c
0002.4000 ≥2.4
—
0.204
0040 40.1
0 ~0
—
RV
2011
d
0004.8000 ≥4.8
—
0.350
0090.3 90
0 ~0
—
RV
2011
e
0004.7700 ≥4.8
—
0.509
0147 147
0.29 0.29
—
RV
2017
EQ Pegasi A
20.400
1038 10.38
0.436
b
0718 718
—
0.643
0284.39 284
0.35
69.2
Astrometry
2022
[52]
Gliese 581#
20.549
1055 10.5
rowspan = "3"|0.31
e
0001.7000 ≥1.7
—
0.0282
00032 3.15
0.0
~45?
RV
2009
3 refuted candidates and a disc [53][54][55][56]
b
0015.8000 ≥16
—
0.0406
00054 5.37
0.0
~45?
RV
2005
c
0005.5000 ≥5.5
—
0.072
0013 12.9
0.0
~45?
RV
2007
Gliese 338 B
20.658
0700 7.0
0.64
b
0010.27000 ≥10.3
—
0.141
0024.45 24.5
0.11
—
RV
2020
[57]
Gliese 625
21.131
1020 10.2
0.30
b
0002.82000 ≥2.8
—
0.0784
0014.6 14.6
0.13 ~0.1
—
RV
2017
[58]
HD 219134#
21.336
0557 5.57
rowspan = "6"|0.78
b
0004.7400 4.7
1.60
0.0388
00031 3.09
0 ~0
85.05
RV
2015
[59][60][61]
c c
0004.3600 4.4
1.51
0.065
00068 6.77
0.0620 0.062
87.28
RV
2015
d d
0016.1700 ≥16
—
0.237
0047 46.9
0.138 0.138
~87?
RV
2015
f f
0007.3000 ≥7.3
—
0.146
0023 22.7
0.148 0.148
~87?
RV
2015
g g
0011.0000 ≥11
—
0.375
0094 94.2
0 0
~87?
RV
2015
h h (e)
0108.0000 ≥108
—
3.11
2247 2,247
0.06 0.06
~87?
RV
2015
LTT 1445 A#
22.387
1052.9 10.53
rowspan="2"| 0.26
c
0001.5400 1.54
1.15
0.0266
0003.12390 3.12
<0.22
87.43
Transit
2021
[62][63]
b
0002.8700 2.87
1.30
0.0381
0005.35877 5.36
<0.11
89.68
Transit
2019
Gliese 393
22.953
0865 8.65
0.41
b
0001.7100 ≥1.71
—
0.0540
0007.0268 7.03
0.00
—
RV
2019
[23][64]
Gliese 667 C#
23.623
1022 10.2
rowspan = "2"|0.33
b3 b
0005.4000 ≥5.4
—
0.049
00072 7.20
0.13
~52?
RV
2009
5 dubious candidates [65][8][66][67][23]
c3 c
↑ || 0003.9000 ≥3.9
—
0.1251
0028 28.2
0.03
~52?
RV
2011
Gliese 514
24.878
0903 9.03
0.53
b
0005.2000 ≥5.2
—
0.421
140
0.45
—
RV
2022
[68]
Gliese 486
26.351
1139.5 11.395
0.32
Su
0002.8200 2.8
1.31
0.0173
0001.47 1.47
0 <0.05
88.4
Transit
2021
[69]
Gliese 686
26.613
0958 9.58
0.42
b
0007.1000 ≥7.1
—
0.097
0015.5 15.5
0.04
—
RV
2019
[70][23]
61 Virginis#
27.836
0474 4.74
rowspan = "2"|0.95
b
0005.1000 ≥5.1
—
0.0502
00042 4.22
0.12 ~0.1
~77?
RV
2009
a debris disc,[71] 1 disputed candidate[72]
c
0018.2000 ≥18
—
0.218
0038 38.0
0.14
~77?
RV
2009
CD Ceti
28.052
1400.1 14.001
0.161
b
0003.9500 ≥3.95
—
0.0185
0002.2907 2.29
0
—
RV
2020
[73]
Gliese 785#
28.739
0613 6.13
rowspan = "2"|0.78
b
0016.9000 ≥17
—
0.32
0074.7 75
0.13
—
RV
2010
[74]
c
0024.0000 ≥24
—
1.18
0526 530
0.32 ~0.3
—
RV
2011
Gliese 849#
28.750
1042 10.4
rowspan = "2"|0.49
b
0269.9000 ≥270
—
2.26
1905 1,910
0.05
—
RV
2006
[75][23]
c
0300.0000 ≥300
—
4.82
5520 5,520
0.087
—
RV
2006
Gliese 433#
29.605
0979 9.79
rowspan="3"|0.48
b
0006.0000 ≥6.0
—
0.062
00074 7.37
0.04
—
RV
2009
[76][23][47]
d
0005.2000 ≥5.2
—
0.178
00036.1 36.1
0.07
—
RV
2020
c
0032.4200 ≥32
—
4.82
05094 5,090
0.12
—
RV
2012
HD 102365 A
30.396
0489 4.89
0.85
b
0016.0000 ≥16
—
0.46
0122 122
0.34
—
RV
2010
[77]
Gliese 367
30.719
0998 9.98
0.45
Tahay
0000.5460 0.55
0.72
0.0071
0000.321962 0.32
0
80.75
Transit
2021
[78]
Gliese 357#
30.776
1090 10.9
rowspan="3"|0.34
b
0006.1000 6.1
1.17
0.035
3.93
0.02
88.92
Transit
2019
[79][23]
c
0003.6000 ≥3.6
—
0.061
9.13
0.04
~89?
RV
2019
d↑
0007.7000 ≥7.7
—
0.204
55.7
0.03
~89?
RV
2019
Gliese 176
30.937
1010 10.1
0.45
b
0008.0000 ≥8.0
—
0.066
0008.77 8.77
0.08
—
RV
2007
1 disputed candidate[80][81][23]
GJ 3512#
30.976
1311 13.11
rowspan="2"| 0.123
b
0147.0000 ≥147
—
0.338
204
0.44
—
RV
2019
[82]
c
0054.0000 ≥54
—
1.2 >1.2
1390 >1390
—
—
RV
2019
Wolf 1069
31.229
1399 13.99
0.167
b↑
0001.2600 ≥1.26
style="background:#BCD4E6;" | —
0.0672
15.6
—
—
RV
2023
[83]
AU Microscopii#
31.683
0863 8.63
rowspan="2"| 0.50
b
0017.0000 17
4.38
0.0645
0008.4629991 8.463
0.10
89.03
Transit
2020
[84][85]
c
0028.0000 <28
3.51
0.1101
18.858991 18.86
0
88.62
Transit
2020
Gliese 436
31.882
1067 10.67
0.41
Awohali
0021.3600 21.4
4.33
0.0280
2.64
0.15
85.8
RV
2004
[86][87]
Gliese 49
32.158
0890 8.9
0.57
b
0016.4000 ≥16.4
—
0.106
17.3
0.03
—
RV
2019
[88]
HD 260655#
32.608
0977 9.77
rowspan="2"| 0.439
b
0002.1400 2.14
1.240
0.0293
0002.76953 2.780
0.039
87.35
Transit
2022
[89]
c
0003.0900 3.09
1.533
0.0475
0005.70588 5.706
0.038
87.79
Transit
2022
Excluded objects
Unlike for bodies within the Solar System, there is no clearly established method for officially recognizing an exoplanet. According to the International Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[90] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases include Wolf 359 (7.9 ly, in 2019),[23] LHS 288 (15.8 ly, in 2007),[91]
Gliese 682 (16.3 ly, in 2014),[47]
40 Eridani A (16.3 ly, in 2018),[92][72]
and GJ 1151 (26.2 ly, in 2021).[93][94][95]
There are also several instances where proposed exoplanets were later disproved by subsequent studies, including candidates around Alpha Centauri B (4.36 ly),[96]
Barnard's Star (5.96 ly),[97][98]
Kapteyn's Star (12.8 ly),[99]
Van Maanen 2 (14.1 ly),[100]
Groombridge 1618 (15.9 ly),[101]
AD Leonis (16.2 ly),[102]
VB 10 (19.3 ly),[103] and Fomalhaut (25.1 ly).[2]
In 2021, a candidate planet was detected around Vega, though it has yet to be confirmed.[104] Another candidate planet, Candidate 1, was directly imaged around Alpha Centauri A, though it may also be a clump of asteroids or an artifact of the discovery mechanism.[105]
The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion of deuterium. Some studies have calculated this to be somewhere around 13 times the mass of Jupiter, and therefore objects more massive than this are usually classified as brown dwarfs.[106] Some proposed candidate exoplanets have been shown to be massive enough to fall above the threshold, and thus are likely brown dwarfs, as is the case for: SCR 1845-6357 B (13.1 ly),[107] SDSS J1416+1348 B (30.3 ly),[108] and WISE 1217+1626 B (30 ly).[109]
Excluded from the current list are known examples of potential free-floating sub-brown dwarfs, or "rogue planets", which are bodies that are too small to undergo fusion yet they do not revolve around a star. Known such examples include: WISE 0855–0714 (7.4 ly),[110] UGPS 0722-05, (13.4 ly)[111] WISE 1541−2250 (18.6 ly),[112] and SIMP J01365663+0933473 (20.0 ly).[113]
See also
List of nearest stars and brown dwarfs
List of nearest bright stars
List of nearest terrestrial exoplanet candidates
List of nearest free floating planetary mass objects
Lists of exoplanets
Lists of planets
List of planet types
List of potentially habitable exoplanets
Lists of astronomical objects
Notes
↑Listed values are primarily taken from NASA Exoplanet Archive,[4] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
"Exoplanet Catalog". Extrasolar Planets Encyclopaedia. Full table. https://exoplanet.eu/catalog/.
"Exoplanets Data Explorer". California Planet Survey. Click the "+" button to visualize additional parameters. http://exoplanets.org/table/.&rft.pub=California+Planet+Survey&rft_id=http://exoplanets.org/table/&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_nearest_exoplanets">
"Open Exoplanet Catalogue". Click the "Show options" to visualize additional parameters. http://www.openexoplanetcatalogue.com/systems/.&rft_id=http://www.openexoplanetcatalogue.com/systems/&rfr_id=info:sid/en.wikibooks.org:Astronomy:List_of_nearest_exoplanets">
↑For reference, the 100th closest known star system in April 2021 was EQ Pegasi (20.4 ly).[5]
↑According to the Bortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has an apparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[6]
↑The star Epsilon Eridani was named Ran (after Rán, the Norse goddess of the sea), and the planet Epsilon Eridani b was named AEgir (after Ægir, Rán's husband),[9] while the planet Fomalhaut b was named Dagon (after Dagon, an ancient Syrian “fish god”[10]).[11]
↑Exoplanet naming convention assigns uncapitalized letters starting from b to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
↑Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in the radial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on their orbital inclination (i). As such, most exoplanets only have an estimated minimum mass (Mreal*sin(i)), where their true masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[13]
References
↑Harrington, J. D.; Villard, Ray (2013-08-01). "NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut". NASA. http://www.nasa.gov/mission_pages/hubble/science/rogue-fomalhaut.html.
↑ 2.02.1Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS117 (18): 9712–9722. doi:10.1073/pnas.1912506117. PMID 32312810. Bibcode: 2020PNAS..117.9712G.
↑ 4.04.14.2"NASA Exoplanet Archive—Confirmed Planetary Systems". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars.
↑ 5.05.1Reylé, Céline; Jardine, Kevin; Fouqué, Pascal; Caballero, Jose A.; Smart, Richard L.; Sozzetti, Alessandro (30 April 2021). "The 10 parsec sample in the Gaia era". Astronomy & Astrophysics650: A201. doi:10.1051/0004-6361/202140985. Bibcode: 2021A&A...650A.201R. Data available at https://gruze.org/10pc/
↑Bortle, John E. (2001). "Light Pollution And Astronomy: The Bortle Dark-Sky Scale". Sky & Telescope. http://www.skyandtelescope.com/resources/darksky/3304011.html. Retrieved 2014-05-20.
↑Powell, Richard (2006). "Stars within 50 light years". An Atlas of the Universe. http://www.atlasoftheuniverse.com/50lys.html.
↑ 8.08.18.28.3"The Habitable Exoplanets Catalog". University of Puerto Rico in Arecibo. 2015-09-01. http://phl.upr.edu/projects/habitable-exoplanets-catalog.
↑"epsilon Eridani". International Astronomical Union. http://nameexoworlds.iau.org/systems/105.
↑"Fomalhaut (alpha Piscis Austrini)". International Astronomical Union. http://nameexoworlds.iau.org/systems/103.
↑ 11.011.1"Final Results of NameExoWorlds Public Vote Released" (Press release). International Astronomical Union. 2015-12-15. Archived from the original on 2018-05-15. Retrieved 2018-03-17.
↑Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W. et al. (2008). "The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets". Publications of the Astronomical Society of the Pacific120 (867): 531–554. doi:10.1086/588487. Bibcode: 2008PASP..120..531C.
↑Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature536 (7617): 437–440. doi:10.1038/nature19106. PMID 27558064. Bibcode: 2016Natur.536..437A. https://www.nature.com/articles/nature19106.
↑Faria, J. P.; Suárez Mascareño, A. et al. (January 4, 2022). "A candidate short-period sub-Earth orbiting Proxima Centauri". Astronomy & Astrophysics (European Southern Observatory) 658: 17. doi:10.1051/0004-6361/202142337. Bibcode: 2022A&A...658A.115F. https://www.eso.org/public/archives/releases/sciencepapers/eso2202/eso2202a.pdf.
↑Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances6 (3): eaax7467. doi:10.1126/sciadv.aax7467. PMID 31998838. Bibcode: 2020SciA....6.7467D.
↑Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics635: L14. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. Bibcode: 2020A&A...635L..14K.
↑Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS4 (6): 86. doi:10.3847/2515-5172/ab9ca9. Bibcode: 2020RNAAS...4...86B.
↑Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; Donati, Jean-Françcois; Moutou, Claire; Delfosse, Xavier et al. (2022). "Line-by-line Velocity Measurements: An Outlier-resistant Method for Precision Velocimetry". The Astronomical Journal164 (3): 84. doi:10.3847/1538-3881/ac7ce6. Bibcode: 2022AJ....164...84A.
↑Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J.; Howard, Andrew W.; Weiss, Lauren M.; Petigura, Erik A. (2021), "Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate", The Astronomical Journal163 (5): 218, doi:10.3847/1538-3881/ac5c47, Bibcode: 2022AJ....163..218H
↑Booth, Mark; Pearce, Tim D; Krivov, Alexander V; Wyatt, Mark C; Dent, William R F; Hales, Antonio S; Lestrade, Jean-François; Cruz-Sáenz de Miera, Fernando et al. (2023-03-30). "The clumpy structure of ϵ Eridani's debris disc revisited by ALMA". Monthly Notices of the Royal Astronomical Society (Oxford University Press (OUP)) 521 (4): 6180–6194. doi:10.1093/mnras/stad938. ISSN 0035-8711. Bibcode: 2023MNRAS.521.6180B.
↑ 22.022.1Feng, Fabo et al. (July 2023). "Revised orbits of the two nearest Jupiters". Monthly Notices of the Royal Astronomical Society525 (1): 607–619. doi:10.1093/mnras/stad2297. Bibcode: 2023MNRAS.525..607F.
↑ 23.0023.0123.0223.0323.0423.0523.0623.0723.0823.0923.1023.1123.12Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
↑Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N. et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science368 (6498): 1477–1481, doi:10.1126/science.aaz0795, PMID 32587019, Bibcode: 2020Sci...368.1477J
↑Bonfils, Xavier (2017). "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". Astronomy and Astrophysics613: A25. doi:10.1051/0004-6361/201731973. Bibcode: 2018A&A...613A..25B.
↑Howard, Andrew W. et al. (October 2014). "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal794 (1): 9. doi:10.1088/0004-637X/794/1/51. 51. Bibcode: 2014ApJ...794...51H.
↑Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L. et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics617: A104. doi:10.1051/0004-6361/201732535. Bibcode: 2018A&A...617A.104P.
↑Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019). "Detection of the nearest Jupiter analog in radial velocity and astrometry data". Monthly Notices of the Royal Astronomical Society490 (4): 5002–5016. doi:10.1093/mnras/stz2912. Bibcode: 2019MNRAS.490.5002F.
↑"tau Cet". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=tau+Cet.
↑"tau Ceti". Open Exoplanet Catalogue. http://www.openexoplanetcatalogue.com/system.html?id=tau Ceti b.
↑"tau Cet b". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_b--1234/.
↑"tau Cet c". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_c--1235/.
↑"tau Cet d". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/tau_cet_d--1236/.
↑Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S. et al. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061" (in en). Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/staa248. Bibcode: 2020MNRAS.493..536D.
↑Stock, S. et al. (2020). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics636: A119. doi:10.1051/0004-6361/201936732. Bibcode: 2020A&A...636A.119S.
↑ 36.036.1Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics602: A88. doi:10.1051/0004-6361/201630153. Bibcode: 2017A&A...602A..88A. https://www.aanda.org/articles/aa/full_html/2017/06/aa30153-16/aa30153-16.html.
↑Caballero, J. A. et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (in en). Astronomy & Astrophysics627: A49. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. Bibcode: 2019A&A...627A..49Z. https://www.aanda.org/articles/aa/pdf/forth/aa35460-19.pdf.
↑ 38.038.1Feng, Fabo (October 2020). "Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs". The Astrophysical Journal Supplement Series250 (2): 29. doi:10.3847/1538-4365/abb139. Bibcode: 2020ApJS..250...29F.
↑Quirrenbach, A.; Passegger, V. M.; Trifonov, T.; Amado, P. J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Aceituno, J. et al. (2022). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics663: A48. doi:10.1051/0004-6361/202142915. Bibcode: 2022A&A...663A..48Q.
↑Bonfils, X. et al. (2007). "The HARPS search for southern extra-solar planets. X. A m sin i = 11 M🜨 planet around the nearby spotted M dwarf GJ 674". Astronomy and Astrophysics474 (1): 293–299. doi:10.1051/0004-6361:20077068. Bibcode: 2007A&A...474..293B. http://www.aanda.org/articles/aa/full/2007/40/aa7068-07/aa7068-07.html.
↑Moutou, C. et al. (July 2023). "Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148". Astronomy & Astrophysics.
↑Suárez Mascareño, A. et al. (December 2022). "Two temperate Earth-mass planets orbiting the nearby star GJ 1002". Astronomy & Astrophysics670: A5. doi:10.1051/0004-6361/202244991. Bibcode: 2023A&A...670A...5S.
↑Gorrini, P.; Astudillo-Defru, N.; Dreizler, S.; Damasso, M.; Díaz, R. F.; Bonfils, X.; Jeffers, S. V.; Barnes, J. R. et al. (2022). "Detailed stellar activity analysis and modelling of GJ 832". Astronomy & Astrophysics664: A64. doi:10.1051/0004-6361/202243063. Bibcode: 2022A&A...664A..64G.
↑Philipot, F. et al. (August 2023). "Multi techniques approach to identify and/or constrain radial velocity sub-stellar companions". Astronomy & Astrophysics.
↑"GJ 3323". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+3323.
↑Stock, S. et al. (2020), "The CARMENES search for exoplanets around M dwarfs Three temperate-to-warm super-Earths", Astronomy & AstrophysicsA112: 643, doi:10.1051/0004-6361/202038820, Bibcode: 2020A&A...643A.112S
↑ 47.047.147.2Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong et al. (8 January 2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series246 (1): 11. doi:10.3847/1538-4365/ab5e7c. Bibcode: 2020ApJS..246...11F.
↑Kaminski, Adrian; Trifonov, Trifon; Caballero, José A.; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Amado, Pedro J.; Zechmeister, Mathias et al. (3 August 2018). "The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617". Astronomy & Astrophysics618: A115. doi:10.1051/0004-6361/201833354. Bibcode: 2018A&A...618A.115K.
↑"HD 20794". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+20794.
↑Curiel, Salvador; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Sanchez-Bermudez, Joel (September 2022). "3D Orbital Architecture of a Dwarf Binary System and Its Planetary Companion". The Astronomical Journal164 (3): 93. doi:10.3847/1538-3881/ac7c66. Bibcode: 2022AJ....164...93C.
↑"GJ 581". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+581.
↑González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F. et al. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)". Astronomy & AstrophysicsA93: 637. doi:10.1051/0004-6361/201937050. Bibcode: 2020A&A...637A..93G.
↑"GJ 625". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+625.
↑Vogt, Steven S. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal814 (1): 12. doi:10.1088/0004-637X/814/1/12. Bibcode: 2015ApJ...814...12V.
↑Johnson, Marshall C. (April 2016). "A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134". The Astrophysical Journal821 (2): 74. doi:10.3847/0004-637X/821/2/74. Bibcode: 2016ApJ...821...74J.
↑Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; Díaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A. et al. (24 June 2019). "Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs" (in en). The Astronomical Journal. doi:10.3847/1538-3881/ab364d.
↑Winters, Jennifer G.; Cloutier, Ryan; Medina, Amber A.; Irwin, Jonathan M.; Charbonneau, David; Astudillo-Defru, Nicola; Bonfils, Xavier; Howard, Andrew W. et al. (2022). "A Second Planet Transiting LTT 1445A and a Determination of the Masses of Both Worlds". The Astronomical Journal163 (4): 168. doi:10.3847/1538-3881/ac50a9. Bibcode: 2022AJ....163..168W.
↑Amado, Pedro J.; Bauer, Florian F.; Rodríguez López, Cristina; Rodríguez, Eloy; Cardona Guillén, C.; Perger, M.; Caballero, José A.; López-González, Maria J. et al. (2021-05-28). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics650: A188. doi:10.1051/0004-6361/202140633.
↑"GJ 667 C". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+667+C.
↑"GJ 667 C d". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/gj_667_c_d--1090/.
↑"GJ 667 C h". Extrasolar Planets Encyclopaedia. 2016-02-23. https://exoplanet.eu/catalog/gj_667_c_h--1296/.
↑Damasso, M.; Perger, M.; Almenara, J. M.; Nardiello, D.; Pérez-Torres, M.; Sozzetti, A.; Hara, N. C.; Quirrenbach, A. et al. (13 April 2022). "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514". Astronomy & Astrophysics666: A187. doi:10.1051/0004-6361/202243522.
↑Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, Ansgar; Bean, J. L.; Luque, R. et al. (5 March 2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation". Science371 (6533): 1038–1041. doi:10.1126/science.abd7645. PMID 33674491. Bibcode: 2021Sci...371.1038T.
↑Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E. et al. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686". Astronomy & AstrophysicsA193: 622. doi:10.1051/0004-6361/201834868.
↑"61 Vir". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=61+Vir.
↑ 72.072.1Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C. et al. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series255 (1): 8. doi:10.3847/1538-4365/abe23c. Bibcode: 2021ApJS..255....8R.
↑Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D. et al. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b". Astronomy and Astrophysics640: A50. doi:10.1051/0004-6361/202038031. Bibcode: 2020A&A...640A..50B.
↑"HD 192310". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+192310.
↑"GJ 849". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+849.
↑"GJ 433". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=GJ+433.
↑"HD 102365". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+102365.
↑Lam, Kristine W. F.; Csizmadia, Szilárd; Astudillo-Defru, Nicola; Bonfils, Xavier; Gandolfi, Davide; Padovan, Sebastiano; Esposito, Massimiliano; Hellier, Coel et al. (3 December 2021). "GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star". Science374 (6572): 1271–1275. doi:10.1126/science.aay3253. PMID 34855492. Bibcode: 2021Sci...374.1271L. https://eprints.keele.ac.uk/10383/1/2112.01309.pdf.
↑Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P. et al. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation" (in en). Astronomy & AstrophysicsA39: 628. doi:10.1051/0004-6361/201935801. Bibcode: 2019A&A...628A..39L.
↑"HD 285968". California Institute of Technology. https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=HD+285968.
↑Morales, J. C. et al. (2019). "A giant exoplanet orbiting a very-low-mass star challenges planet formation models". Science365 (6460): 1441–1445. doi:10.1126/science.aax3198. ISSN 0036-8075. PMID 31604272. Bibcode: 2019Sci...365.1441M.
↑Kossakowski, D. et al. (January 2023). "The CARMENES search for exoplanets around M dwarfs, Wolf 1069 b: Earth-mass planet in the habitable zone of a nearby, very low-mass star". Astronomy & Astrophysics670. doi:10.1051/0004-6361/202245322. Bibcode: 2023A&A...670A..84K.
↑Plavchan, Peter et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature582 (7813): 497–500. doi:10.1038/s41586-020-2400-z. PMID 32581383. Bibcode: 2020Natur.582..497P.
↑Martioli, E. (2021). "New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance". Astronomy & AstrophysicsA177: 649. doi:10.1051/0004-6361/202040235. Bibcode: 2021A&A...649A.177M.
↑Gillon, M. (2007). "Detection of transits of the nearby hot Neptune GJ 436 b". Astronomy and Astrophysics472 (2): L13–L16. doi:10.1051/0004-6361:20077799. Bibcode: 2007A&A...472L..13G.
↑Lanotte, A. A. et al. (2014). "A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b". Astronomy and Astrophysics572: A73. doi:10.1051/0004-6361/201424373. Bibcode: 2014A&A...572A..73L.
↑Perger, M. et al. (April 2019). "Gliese 49: Activity evolution and detection of a super-Earth". Astronomy & Astrophysics624: 19. doi:10.1051/0004-6361/201935192. A123. ISSN 0004-6361. Bibcode: 2019A&A...624A.123P.
↑Luque, R. et al. (2022). "The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc". Astronomy & Astrophysics664: A199. doi:10.1051/0004-6361/202243834. Bibcode: 2022A&A...664A.199L.
↑Lee, Rhodi (2015-09-18). "Want To Name An Exoplanet? Here's Your Chance". Tech Times. http://www.techtimes.com/articles/77119/20150818/want-to-name-an-exoplanet-heres-your-chance.htm.
↑Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C (2009). "A Search for Astrometric Companions to Stars in the Southern Hemisphere". Publications of the Astronomical Society of the Pacific121 (878): 365. doi:10.1086/599044. Bibcode: 2009PASP..121..365B.
↑Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik et al. (October 2018). "The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society480 (2): 2411–2422. doi:10.1093/mnras/sty1933. Bibcode: 2018MNRAS.480.2411M.
↑Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P. et al. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy4 (6): 577–583. doi:10.1038/s41550-020-1011-9. Bibcode: 2020NatAs...4..577V.
↑Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D. et al. (3 February 2021). "The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star". The Astrophysical Journal Letters919 (1): L9. doi:10.3847/2041-8213/abe2b2. Bibcode: 2021ApJ...919L...9M.
↑Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A. et al. (2021), "The CARMENES search for exoplanets around M dwarfs, No evidence for a super-Earth in a 2-day orbit around GJ 1151", Astronomy & Astrophysics649: L12, doi:10.1051/0004-6361/202140786, Bibcode: 2021A&A...649L..12P
↑Rajpaul, Vinesh (19 October 2015). "Ghost in the time series: no planet for Alpha Cen B". Monthly Notices of the Royal Astronomical Society: Letters456 (1): L6–L10. doi:10.1093/mnrasl/slv164. Bibcode: 2016MNRAS.456L...6R.
↑Ribas, I.; Tuomi, M.; Reiners, Ansgar; Butler, R. P. et al. (2018-11-14). "A candidate super-Earth planet orbiting near the snow line of Barnard's star". Nature (Holtzbrinck Publishing Group) 563 (7731): 365–368. doi:10.1038/s41586-018-0677-y. ISSN 0028-0836. OCLC 716177853. PMID 30429552. Bibcode: 2018Natur.563..365R. https://www.eso.org/public/archives/releases/sciencepapers/eso1837/eso1837a.pdf.
↑Lubin, Jack; Robertson, Paul; Stefansson, Gudmundur et al. (15 July 2021). "Stellar Activity Manifesting at a One-year Alias Explains Barnard b as a False Positive". The Astronomical Journal (American Astronomical Society) 162 (2): 61. doi:10.3847/1538-3881/ac0057. ISSN 0004-6256. Bibcode: 2021AJ....162...61L.
↑Bortle, Anna et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal161 (5): 230. doi:10.3847/1538-3881/abec89. Bibcode: 2021AJ....161..230B.
↑Farihi, J.; Becklin, E. E.; Macintosh, B. A. (June 2004). "Mid-Infrared Observations of van Maanen 2: No Substellar Companion". Astrophysical Journal Letters608 (2): L109–L112. doi:10.1086/422502. Bibcode: 2004ApJ...608L.109F.
↑Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh et al. (May 2010). "Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations". The Astrophysical Journal714 (2): 1551–1569. doi:10.1088/0004-637X/714/2/1551. Bibcode: 2010ApJ...714.1551H.
↑Carleo, I. (June 2020). "The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b". Astronomy & Astrophysics638: A5. doi:10.1051/0004-6361/201937369. Bibcode: 2020A&A...638A...5C.
↑Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth et al. (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal161 (4): 157. doi:10.3847/1538-3881/abdec8. Bibcode: 2021AJ....161..157H.
↑Wagner, K.; Boehle, A.; Pathak, P.; Kasper, M.; Arsenault, R.; Jakob, G.; Käufl, U.; Leveratto, S. et al. (2021-02-10). "Imaging low-mass planets within the habitable zone of α Centauri" (in en). Nature Communications12 (1): 922. doi:10.1038/s41467-021-21176-6. ISSN 2041-1723. PMID 33568657. Bibcode: 2021NatCo..12..922W.
↑Boss, Alan P.; Butler, R. Paul; Hubbard, William B. et al. (2007). "Working Group on Extrasolar Planets". Proceedings of the International Astronomical Union1 (T26A): 183. doi:10.1017/S1743921306004509. Bibcode: 2007IAUTA..26..183B.
↑Clavin, Whitney; Harrington, J. D. (2014-04-25). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA. http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425/.
↑Lucas, P. W.; Tinney, C. G.; Burningham, B. et al. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society408 (1): L56–L60. doi:10.1111/j.1745-3933.2010.00927.x. Bibcode: 2010MNRAS.408L..56L.
↑Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R. et al. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal743 (1): 50. doi:10.1088/0004-637X/743/1/50. Bibcode: 2011ApJ...743...50C.
↑"Astronomers discover a nearby free-range planet with incredible magne". http://www.astronomy.com/news/2018/08/free-range-planet.