-Algebra

From Handwiki
Short description: Mathematical structure in abstract algebra

In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings R and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.[lower-alpha 1]

Definitions

*-ring

In mathematics, a *-ring is a ring with a map * : AA that is an antiautomorphism and an involution.

More precisely, * is required to satisfy the following properties:[1]

  • (x + y)* = x* + y*
  • (x y)* = y* x*
  • 1* = 1
  • (x*)* = x

for all x, y in A.

This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant.

Elements such that x* = x are called self-adjoint.[2]

Archetypical examples of a *-ring are fields of complex numbers and algebraic numbers with complex conjugation as the involution. One can define a sesquilinear form over any *-ring.

Also, one can define *-versions of algebraic objects, such as ideal and subring, with the requirement to be *-invariant: xIx* ∈ I and so on.


*-rings are unrelated to star semirings in the theory of computation.

*-algebra

A *-algebra A is a *-ring,[lower-alpha 2] with involution * that is an associative algebra over a commutative *-ring R with involution , such that (r x)* = rx*  ∀rR, xA.[3]

The base *-ring R is often the complex numbers (with acting as complex conjugation).

It follows from the axioms that * on A is conjugate-linear in R, meaning

(λ x + μy)* = λx* + μy*

for λ, μR, x, yA.

A *-homomorphism f : AB is an algebra homomorphism that is compatible with the involutions of A and B, i.e.,

  • f(a*) = f(a)* for all a in A.[2]

Philosophy of the *-operation

The *-operation on a *-ring is analogous to complex conjugation on the complex numbers. The *-operation on a *-algebra is analogous to taking adjoints in complex matrix algebras.

Notation

The * involution is a unary operation written with a postfixed star glyph centered above or near the mean line:

xx*, or
xx (TeX: x^*),

but not as "x"; see the asterisk article for details.

Examples

  • Any commutative ring becomes a *-ring with the trivial (identical) involution.
  • The most familiar example of a *-ring and a *-algebra over reals is the field of complex numbers C where * is just complex conjugation.
  • More generally, a field extension made by adjunction of a square root (such as the imaginary unit −1) is a *-algebra over the original field, considered as a trivially-*-ring. The * flips the sign of that square root.
  • A quadratic integer ring (for some D) is a commutative *-ring with the * defined in the similar way; quadratic fields are *-algebras over appropriate quadratic integer rings.
  • Quaternions, split-complex numbers, dual numbers, and possibly other hypercomplex number systems form *-rings (with their built-in conjugation operation) and *-algebras over reals (where * is trivial). Neither of the three is a complex algebra.
  • Hurwitz quaternions form a non-commutative *-ring with the quaternion conjugation.
  • The matrix algebra of n × n matrices over R with * given by the transposition.
  • The matrix algebra of n × n matrices over C with * given by the conjugate transpose.
  • Its generalization, the Hermitian adjoint in the algebra of bounded linear operators on a Hilbert space also defines a *-algebra.
  • The polynomial ring R[x] over a commutative trivially-*-ring R is a *-algebra over R with P *(x) = P (−x).
  • If (A, +, ×, *) is simultaneously a *-ring, an algebra over a ring R (commutative), and (r x)* = r (x*)  ∀rR, xA, then A is a *-algebra over R (where * is trivial).
    • As a partial case, any *-ring is a *-algebra over integers.
  • Any commutative *-ring is a *-algebra over itself and, more generally, over any its *-subring.
  • For a commutative *-ring R, its quotient by any its *-ideal is a *-algebra over R.
    • For example, any commutative trivially-*-ring is a *-algebra over its dual numbers ring, a *-ring with non-trivial *, because the quotient by ε = 0 makes the original ring.
    • The same about a commutative ring K and its polynomial ring K[x]: the quotient by x = 0 restores K.
  • In Hecke algebra, an involution is important to the Kazhdan–Lusztig polynomial.
  • The endomorphism ring of an elliptic curve becomes a *-algebra over the integers, where the involution is given by taking the dual isogeny. A similar construction works for abelian varieties with a polarization, in which case it is called the Rosati involution (see Milne's lecture notes on abelian varieties).

Involutive Hopf algebras are important examples of *-algebras (with the additional structure of a compatible comultiplication); the most familiar example being:

  • The group Hopf algebra: a group ring, with involution given by gg−1.

Non-Example

Not every algebra admits an involution:

Regard the 2×2 matrices over the complex numbers. Consider the following subalgebra: [math]\displaystyle{ \mathcal{A} := \left\{\begin{pmatrix}a&b\\0&0\end{pmatrix} : a,b\in\Complex\right\} }[/math]

Any nontrivial antiautomorphism necessarily has the form:[4] [math]\displaystyle{ \varphi_z\left[\begin{pmatrix}1&0\\0&0\end{pmatrix}\right] = \begin{pmatrix}1&z\\0&0\end{pmatrix} \quad \varphi_z\left[\begin{pmatrix}0&1\\0&0\end{pmatrix}\right] = \begin{pmatrix}0&0\\0&0\end{pmatrix} }[/math] for any complex number [math]\displaystyle{ z\in\Complex }[/math].

It follows that any nontrivial antiautomorphism fails to be idempotent: [math]\displaystyle{ \varphi_z^2\left[\begin{pmatrix}0&1\\0&0\end{pmatrix}\right] = \begin{pmatrix}0&0\\0&0\end{pmatrix}\neq\begin{pmatrix}0&1\\0&0\end{pmatrix} }[/math]

Concluding that the subalgebra admits no involution.

Additional structures

Many properties of the transpose hold for general *-algebras:

  • The Hermitian elements form a Jordan algebra;
  • The skew Hermitian elements form a Lie algebra;
  • If 2 is invertible in the *-ring, then the operators 1/2(1 + *) and 1/2(1 − *) are orthogonal idempotents,[2] called symmetrizing and anti-symmetrizing, so the algebra decomposes as a direct sum of modules (vector spaces if the *-ring is a field) of symmetric and anti-symmetric (Hermitian and skew Hermitian) elements. These spaces do not, generally, form associative algebras, because the idempotents are operators, not elements of the algebra.

Skew structures

Given a *-ring, there is also the map −* : x ↦ −x*. It does not define a *-ring structure (unless the characteristic is 2, in which case −* is identical to the original *), as 1 ↦ −1, neither is it antimultiplicative, but it satisfies the other axioms (linear, involution) and hence is quite similar to *-algebra where xx*.

Elements fixed by this map (i.e., such that a = −a*) are called skew Hermitian.

For the complex numbers with complex conjugation, the real numbers are the Hermitian elements, and the imaginary numbers are the skew Hermitian.

See also

  • Semigroup with involution
  • B*-algebra
  • C*-algebra
  • Dagger category
  • von Neumann algebra
  • Baer ring
  • Operator algebra
  • Conjugate (algebra)
  • Cayley–Dickson construction
  • Composition algebra

Notes

  1. In this context, involution is taken to mean an involutory antiautomorphism, also known as an anti-involution.
  2. Most definitions do not require a *-algebra to have the unity, i.e. a *-algebra is allowed to be a *-rng only.

References

  1. Weisstein, Eric W. (2015). "C-Star Algebra". http://mathworld.wolfram.com/C-Star-Algebra.html. 
  2. 2.0 2.1 2.2 Baez, John (2015). "Octonions". University of California, Riverside. Archived from the original on 26 March 2015. https://web.archive.org/web/20150326133405/http://math.ucr.edu/home/baez/octonions/node5.html. Retrieved 27 January 2015. 
  3. star-algebra in nLab
  4. Winker, S. K.; Wos, L.; Lusk, E. L. (1981). "Semigroups, Antiautomorphisms, and Involutions: A Computer Solution to an Open Problem, I". Mathematics of Computation 37 (156): 533–545. doi:10.2307/2007445. ISSN 0025-5718. https://www.jstor.org/stable/2007445. 



Retrieved from "https://handwiki.org/wiki/index.php?title=*-algebra&oldid=3013528"

Categories: [Algebras] [Ring theory]


Download as ZWI file | Last modified: 11/27/2023 08:08:16 | 42 views
☰ Source: https://handwiki.org/wiki/_-algebra | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]