|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | iridium, Ir, 77 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical series | transition metals | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, Period, Block | 9, 6, d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | silvery white |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic mass | 192.217(3) g/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Xe] 4f14 5d7 6s2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 15, 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 22.65 g/cm³ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 19 g/cm³ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 2719 K (2446 °C, 4435 °F) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 4701 K (4428 °C, 8002 °F) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 41.12 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 231.8 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat capacity | (25 °C) 25.10 J/(mol·K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | cubic face centered | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 2, 3, 4, 6 (mildly basic oxide) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 2.20 (Pauling scale) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 880 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 1600 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 135 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius (calc.) | 180 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 137 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellaneous | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | no data | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | (20 °C) 47.1 nΩ·m | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) 147 W/(m·K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) 6.4 µm/(m·K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 4825 m/s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (r.t.) 528 m/s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 210 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 320 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.26 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 6.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 1760 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 1670 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7439-88-5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notable isotopes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Iridium (chemical symbol Ir, atomic number 77) is a dense, hard, brittle, silvery-white transition metal of the platinum family. It occurs in natural alloys with platinum or osmium and is notable for being the most corrosion-resistant element known. Researchers have associated it with a meteorite strike that is thought to have caused the demise of dinosaurs. It is used in high-temperature apparatuses and electrical contacts, and as a hardening agent for platinum alloys. It is a catalyst for certain reactions in organic chemistry, and radioactive iridium may be used in radiation therapy for some types of cancer.
Iridium is rare in the Earth's crust, but it is found at higher concentrations in some volcanic flows, suggesting that the Earth's core is richer in this element. Also, iridium is relatively common in meteorites.
The element is found in nature with platinum and other platinum group metals in alluvial deposits. Naturally occurring iridium alloys include osmiridium and iridiosmium, both of which are mixtures of iridium and osmium. Iridium is recovered commercially as a byproduct from nickel mining and processing.
Iridium was discovered in 1803 by Smithson Tennant, while working with William Hyde Wollaston in London, England. They were looking for a way to purify platinum by dissolving native platinum ore in aqua regia (a mixture of concentrated hydrochloric and nitric acids). A large amount of insoluble black powder remained as a byproduct of this operation. Wollaston focused on analyzing the soluble portion and discovered palladium (in 1802) and rhodium (in 1804), while Tennant examined the insoluble residue. In the summer of 1803, Tennant identified two new elements—osmium and iridium. Discovery of the new elements was documented in a letter to the Royal Society on June 21, 1804.
The element was named after the Latin word iris, meaning rainbow, because many of its salts are strongly colored.
An alloy of 90 percent platinum and 10 percent iridium was used in 1889 to construct the standard meter bar and kilogram mass, kept by the Bureau International des Poids et Mesures (International Bureau of Weights and Measures) near Paris. In 1960, the meter bar was replaced as the definition of the fundamental unit of length (see krypton), but the kilogram prototype is still the international standard of mass.
Iridium has also been linked to evidence for what is known as the "Cretaceous-Tertiary extinction event" ("KT event") of 65 million years ago, at the temporal boundary between the Cretaceous and Tertiary eras. In 1980, a team led by Luis Alvarez found a thin stratum of iridium-rich clay near what is now Yucatán Peninsula. They attributed this iridium to an asteroid or comet impact, and theorized that this impact was responsible for the demise of the dinosaurs. This theory is widely accepted by scientists. On the other hand, Dewey M. McLean and others argue that the iridium may have been of volcanic origin instead. The Earth's core is rich in iridium, and Piton de la Fournaise on Réunion, for example, is still releasing iridium today.
Iridium is a transition metal that lies between osmium and platinum in period six of the periodic table. It is thus a member of the platinum group of metals. In addition, it is located in group nine (former group 8B), just below rhodium.
Like platinum, iridium is white, but it has a slight yellowish cast. On account of its extreme hardness and brittle properties, iridium is difficult to machine, form, or work. Yet it can be used to make high-strength alloys that withstand high temperatures.
Iridium is the most corrosion-resistant metal known. It cannot be attacked by any acid, including aqua regia, but it can be attacked by molten salts such as sodium chloride (NaCl) and sodium cyanide (NaCN).
The measured density of this element is only slightly lower than that of osmium, which is often listed as the densest element known. On the other hand, when the density is calculated based on the space lattice structures of these elements, one obtains a density of 22,650 kilograms per cubic meter (kg/m³) for iridium, versus 22,610 kg/m³ for osmium. Based on these data, it is currently not possible to arrive at a firm conclusion about which of them is denser.
Iridium has two stable, naturally occurring isotopes: 191Ir and 193Ir. In addition, it has many radioisotopes, of which Ir-192 has the longest half-life (73.83 days). Ir-192 beta decays into platinum-192, while most of the other radioisotopes decay into osmium.
Platinum/iridium alloy was once used in bushing the vents of heavy ordnance. A finely powdered material called iridium black was used for painting porcelain black. In the twentieth century, iridium was used to tip some fountain pen nibs. The tip material in modern pens is still conventionally called "iridium," although there is seldom any iridium in it.
Iridium metal is relatively unreactive and therefore mostly nontoxic. Iridium compounds, however, should be considered highly toxic.
All links retrieved March 5, 2018.
New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:
The history of this article since it was imported to New World Encyclopedia:
Note: Some restrictions may apply to use of individual images which are separately licensed.