From Handwiki In mathematics, and more precisely in analysis, the Wallis integrals constitute a family of integrals introduced by John Wallis.
The Wallis integrals are the terms of the sequence [math]\displaystyle{ (W_n)_{n \geq 0} }[/math] defined by
or equivalently,
The first few terms of this sequence are:
| [math]\displaystyle{ W_0 }[/math] | [math]\displaystyle{ W_1 }[/math] | [math]\displaystyle{ W_2 }[/math] | [math]\displaystyle{ W_3 }[/math] | [math]\displaystyle{ W_4 }[/math] | [math]\displaystyle{ W_5 }[/math] | [math]\displaystyle{ W_6 }[/math] | [math]\displaystyle{ W_7 }[/math] | [math]\displaystyle{ W_8 }[/math] | ... | [math]\displaystyle{ W_n }[/math] |
| [math]\displaystyle{ \frac{\pi}{2} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ \frac{\pi}{4} }[/math] | [math]\displaystyle{ \frac{2}{3} }[/math] | [math]\displaystyle{ \frac{3\pi}{16} }[/math] | [math]\displaystyle{ \frac{8}{15} }[/math] | [math]\displaystyle{ \frac{5\pi}{32} }[/math] | [math]\displaystyle{ \frac{16}{35} }[/math] | [math]\displaystyle{ \frac{35\pi}{256} }[/math] | ... | [math]\displaystyle{ \frac{n-1}{n} W_{n-2} }[/math] |
The sequence [math]\displaystyle{ (W_n) }[/math] is decreasing and has positive terms. In fact, for all [math]\displaystyle{ n \geq 0: }[/math]
Since the sequence [math]\displaystyle{ (W_n) }[/math] is decreasing and bounded below by 0, it converges to a non-negative limit. Indeed, the limit is zero (see below).
By means of integration by parts, a reduction formula can be obtained. Using the identity [math]\displaystyle{ \sin^2 x = 1 - \cos^2 x }[/math], we have for all [math]\displaystyle{ n \geq 2 }[/math],
Integrating the second integral by parts, with:
we have:
Substituting this result into equation (1) gives
and thus
for all [math]\displaystyle{ n \geq 2. }[/math]
This is a recurrence relation giving [math]\displaystyle{ W_n }[/math] in terms of [math]\displaystyle{ W_{n-2} }[/math]. This, together with the values of [math]\displaystyle{ W_0 }[/math] and [math]\displaystyle{ W_1, }[/math] give us two sets of formulae for the terms in the sequence [math]\displaystyle{ (W_n) }[/math], depending on whether [math]\displaystyle{ n }[/math] is odd or even:
Wallis's integrals can be evaluated by using Euler integrals:
If we make the following substitution inside the Beta function:
[math]\displaystyle{ \quad \left\{\begin{matrix} t = \sin^2 u \\ 1-t = \cos^2 u \\ dt = 2\sin u\cos u du\end{matrix}\right., }[/math]
we obtain:
so this gives us the following relation to evaluate the Wallis integrals:
So, for odd [math]\displaystyle{ n }[/math], writing [math]\displaystyle{ n = 2p+1 }[/math], we have:
whereas for even [math]\displaystyle{ n }[/math], writing [math]\displaystyle{ n = 2p }[/math] and knowing that [math]\displaystyle{ \Gamma\left(\tfrac{1}{2}\right)=\sqrt{\pi} }[/math], we get :
For all [math]\displaystyle{ n \in\, \mathbb{N} }[/math], let [math]\displaystyle{ u_n = (n + 1)\, W_n\, W_{n + 1} }[/math].
It turns out that, [math]\displaystyle{ \forall n\in \N,\, u_{n + 1} = u_n }[/math] because of equation [math]\displaystyle{ \mathbf{(2)} }[/math]. In other words [math]\displaystyle{ \ (u_n) }[/math] is a constant.
It follows that for all [math]\displaystyle{ n \in\, \mathbb{N} }[/math], [math]\displaystyle{ u_n = u_0 = W_0\, W_1 = \frac{\pi}{2} }[/math].
Now, since [math]\displaystyle{ \ n + 1 \sim n }[/math] and [math]\displaystyle{ \ W_{n + 1} \sim W_n }[/math], we have, by the product rules of equivalents, [math]\displaystyle{ \ u_n \sim n\, W_n^2 }[/math].
Thus, [math]\displaystyle{ \ n\, W_n^2 \sim \frac{\pi}{2} }[/math], from which the desired result follows (noting that [math]\displaystyle{ \ W_n \gt 0 }[/math]).
Suppose that we have the following equivalence (known as Stirling's formula):
for some constant [math]\displaystyle{ C }[/math] that we wish to determine. From above, we have
Expanding [math]\displaystyle{ W_{2p} }[/math] and using the formula above for the factorials, we get
From (3) and (4), we obtain by transitivity:
Solving for [math]\displaystyle{ C }[/math] gives [math]\displaystyle{ C = \sqrt{2\pi}. }[/math] In other words,
Similarly, from above, we have:
Expanding [math]\displaystyle{ W_{2p} }[/math] and using the formula above for double factorials, we get:
Simplifying, we obtain:
or
The Gaussian integral can be evaluated through the use of Wallis' integrals.
We first prove the following inequalities:
In fact, letting [math]\displaystyle{ u/n=t }[/math], the first inequality (in which [math]\displaystyle{ t \in [0,1] }[/math]) is equivalent to [math]\displaystyle{ 1-t\leqslant e^{-t} }[/math]; whereas the second inequality reduces to [math]\displaystyle{ e^{-t}\leqslant (1+t)^{-1} }[/math], which becomes [math]\displaystyle{ e^t\geqslant 1+t }[/math]. These 2 latter inequalities follow from the convexity of the exponential function (or from an analysis of the function [math]\displaystyle{ t \mapsto e^t -1 -t }[/math]).
Letting [math]\displaystyle{ u=x^2 }[/math] and making use of the basic properties of improper integrals (the convergence of the integrals is obvious), we obtain the inequalities:
[math]\displaystyle{ \int_0^{\sqrt n}(1-x^2/n)^n dx \leqslant \int_0^{\sqrt n} e^{-x^2} dx \leqslant \int_0^{+\infty} e^{-x^2} dx \leqslant \int_0^{+\infty} (1+x^2/n)^{-n} dx }[/math] for use with the sandwich theorem (as [math]\displaystyle{ n \to \infty }[/math]).
The first and last integrals can be evaluated easily using Wallis' integrals. For the first one, let [math]\displaystyle{ x=\sqrt n\, \sin\,t }[/math] (t varying from 0 to [math]\displaystyle{ \pi /2 }[/math]). Then, the integral becomes [math]\displaystyle{ \sqrt n \,W_{2n+1} }[/math]. For the last integral, let [math]\displaystyle{ x=\sqrt n\, \tan\, t }[/math] (t varying from [math]\displaystyle{ 0 }[/math] to [math]\displaystyle{ \pi /2 }[/math]). Then, it becomes [math]\displaystyle{ \sqrt n \,W_{2n-2} }[/math].
As we have shown before, [math]\displaystyle{ \lim_{n\rightarrow +\infty} \sqrt n\;W_n=\sqrt{\pi /2} }[/math]. So, it follows that [math]\displaystyle{ \int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi} /2 }[/math].
Remark: There are other methods of evaluating the Gaussian integral. Some of them are more direct.
The same properties lead to Wallis product, which expresses [math]\displaystyle{ \frac{\pi}{2}\, }[/math] (see [math]\displaystyle{ \pi }[/math]) in the form of an infinite product.
![]() |
Categories: [Integrals]